File size: 10,479 Bytes
2568013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
from copy import deepcopy
from dataclasses import dataclass
from typing import Literal

import torch
from einops import rearrange
from torch import nn

from .croco.blocks import DecoderBlock
from .croco.croco import CroCoNet
from .croco.misc import fill_default_args, freeze_all_params, transpose_to_landscape, is_symmetrized, interleave, \
    make_batch_symmetric
from .croco.patch_embed import get_patch_embed
from .backbone import Backbone
from src.geometry.camera_emb import get_intrinsic_embedding

inf = float('inf')


croco_params = {
    'ViTLarge_BaseDecoder': {
        'enc_depth': 24,
        'dec_depth': 12,
        'enc_embed_dim': 1024,
        'dec_embed_dim': 768,
        'enc_num_heads': 16,
        'dec_num_heads': 12,
        'pos_embed': 'RoPE100',
        'img_size': (512, 512),
    },
}

default_dust3r_params = {
    'enc_depth': 24,
    'dec_depth': 12,
    'enc_embed_dim': 1024,
    'dec_embed_dim': 768,
    'enc_num_heads': 16,
    'dec_num_heads': 12,
    'pos_embed': 'RoPE100',
    'patch_embed_cls': 'PatchEmbedDust3R',
    'img_size': (512, 512),
    'head_type': 'dpt',
    'output_mode': 'pts3d',
    'depth_mode': ('exp', -inf, inf),
    'conf_mode': ('exp', 1, inf)
}


@dataclass
class BackboneCrocoCfg:
    name: Literal["croco"]
    model: Literal["ViTLarge_BaseDecoder", "ViTBase_SmallDecoder", "ViTBase_BaseDecoder"]  # keep interface for the last two models, but they are not supported
    patch_embed_cls: str = 'PatchEmbedDust3R'  # PatchEmbedDust3R or ManyAR_PatchEmbed
    asymmetry_decoder: bool = True
    intrinsics_embed_loc: Literal["encoder", "decoder", "none"] = 'none'
    intrinsics_embed_degree: int = 0
    intrinsics_embed_type: Literal["pixelwise", "linear", "token"] = 'token'  # linear or dpt


class AsymmetricCroCoMulti(CroCoNet):
    """ Two siamese encoders, followed by two decoders.
    The goal is to output 3d points directly, both images in view1's frame
    (hence the asymmetry).
    """

    def __init__(self, cfg: BackboneCrocoCfg, d_in: int) -> None:

        self.intrinsics_embed_loc = cfg.intrinsics_embed_loc
        self.intrinsics_embed_degree = cfg.intrinsics_embed_degree
        self.intrinsics_embed_type = cfg.intrinsics_embed_type
        self.intrinsics_embed_encoder_dim = 0
        self.intrinsics_embed_decoder_dim = 0
        if self.intrinsics_embed_loc == 'encoder' and self.intrinsics_embed_type == 'pixelwise':
            self.intrinsics_embed_encoder_dim = (self.intrinsics_embed_degree + 1) ** 2 if self.intrinsics_embed_degree > 0 else 3
        elif self.intrinsics_embed_loc == 'decoder' and self.intrinsics_embed_type == 'pixelwise':
            self.intrinsics_embed_decoder_dim = (self.intrinsics_embed_degree + 1) ** 2 if self.intrinsics_embed_degree > 0 else 3

        self.patch_embed_cls = cfg.patch_embed_cls
        self.croco_args = fill_default_args(croco_params[cfg.model], CroCoNet.__init__)

        super().__init__(**croco_params[cfg.model])

        if cfg.asymmetry_decoder:
            self.dec_blocks2 = deepcopy(self.dec_blocks)  # This is used in DUSt3R and MASt3R

        if self.intrinsics_embed_type == 'linear' or self.intrinsics_embed_type == 'token':
            self.intrinsic_encoder = nn.Linear(9, 1024)

        # self.set_downstream_head(output_mode, head_type, landscape_only, depth_mode, conf_mode, **croco_kwargs)
        # self.set_freeze(freeze)

    def _set_patch_embed(self, img_size=224, patch_size=16, enc_embed_dim=768, in_chans=3):
        in_chans = in_chans + self.intrinsics_embed_encoder_dim
        self.patch_embed = get_patch_embed(self.patch_embed_cls, img_size, patch_size, enc_embed_dim, in_chans)

    def _set_decoder(self, enc_embed_dim, dec_embed_dim, dec_num_heads, dec_depth, mlp_ratio, norm_layer, norm_im2_in_dec):
        self.dec_depth = dec_depth
        self.dec_embed_dim = dec_embed_dim
        # transfer from encoder to decoder
        enc_embed_dim = enc_embed_dim + self.intrinsics_embed_decoder_dim
        self.decoder_embed = nn.Linear(enc_embed_dim, dec_embed_dim, bias=True)
        # transformer for the decoder
        self.dec_blocks = nn.ModuleList([
            DecoderBlock(dec_embed_dim, dec_num_heads, mlp_ratio=mlp_ratio, qkv_bias=True, norm_layer=norm_layer, norm_mem=norm_im2_in_dec, rope=self.rope)
            for i in range(dec_depth)])
        # final norm layer
        self.dec_norm = norm_layer(dec_embed_dim)

    def load_state_dict(self, ckpt, **kw):
        # duplicate all weights for the second decoder if not present
        new_ckpt = dict(ckpt)
        if not any(k.startswith('dec_blocks2') for k in ckpt):
            for key, value in ckpt.items():
                if key.startswith('dec_blocks'):
                    new_ckpt[key.replace('dec_blocks', 'dec_blocks2')] = value
        return super().load_state_dict(new_ckpt, **kw)

    def set_freeze(self, freeze):  # this is for use by downstream models
        assert freeze in ['none', 'mask', 'encoder'], f"unexpected freeze={freeze}"
        to_be_frozen = {
            'none':     [],
            'mask':     [self.mask_token],
            'encoder':  [self.mask_token, self.patch_embed, self.enc_blocks],
            'encoder_decoder':  [self.mask_token, self.patch_embed, self.enc_blocks, self.enc_norm, self.decoder_embed, self.dec_blocks, self.dec_blocks2, self.dec_norm],
        }
        freeze_all_params(to_be_frozen[freeze])

    def _set_prediction_head(self, *args, **kwargs):
        """ No prediction head """
        return

    def _encode_image(self, image, true_shape, intrinsics_embed=None):
        # embed the image into patches  (x has size B x Npatches x C)
        x, pos = self.patch_embed(image, true_shape=true_shape)

        if intrinsics_embed is not None:

            if self.intrinsics_embed_type == 'linear':
                x = x + intrinsics_embed
            elif self.intrinsics_embed_type == 'token':
                x = torch.cat((x, intrinsics_embed), dim=1)
                add_pose = pos[:, 0:1, :].clone()
                add_pose[:, :, 0] += (pos[:, -1, 0].unsqueeze(-1) + 1)
                pos = torch.cat((pos, add_pose), dim=1)

        # add positional embedding without cls token
        assert self.enc_pos_embed is None

        # now apply the transformer encoder and normalization
        for blk in self.enc_blocks:
            x = blk(x, pos)

        x = self.enc_norm(x)
        return x, pos, None

    def _decoder(self, feat, pose, extra_embed=None):
        b, v, l, c = feat.shape
        final_output = [feat]  # before projection
        if extra_embed is not None:
            feat = torch.cat((feat, extra_embed), dim=-1)

        # project to decoder dim
        f = rearrange(feat, "b v l c -> (b v) l c")
        f = self.decoder_embed(f)
        f = rearrange(f, "(b v) l c -> b v l c", b=b, v=v)
        final_output.append(f)

        def generate_ctx_views(x):
            b, v, l, c = x.shape
            ctx_views = x.unsqueeze(1).expand(b, v, v, l, c)
            mask = torch.arange(v).unsqueeze(0) != torch.arange(v).unsqueeze(1)
            ctx_views = ctx_views[:, mask].reshape(b, v, v - 1, l, c)  # B, V, V-1, L, C
            ctx_views = ctx_views.flatten(2, 3)  # B, V, (V-1)*L, C
            return ctx_views.contiguous()

        pos_ctx = generate_ctx_views(pose)
        for blk1, blk2 in zip(self.dec_blocks, self.dec_blocks2):
            feat_current = final_output[-1]
            feat_current_ctx = generate_ctx_views(feat_current)
            # img1 side
            f1, _ = blk1(feat_current[:, 0].contiguous(), feat_current_ctx[:, 0].contiguous(), pose[:, 0].contiguous(), pos_ctx[:, 0].contiguous())
            f1 = f1.unsqueeze(1)
            # img2 side
            f2, _ = blk2(rearrange(feat_current[:, 1:], "b v l c -> (b v) l c"),
                         rearrange(feat_current_ctx[:, 1:], "b v l c -> (b v) l c"),
                         rearrange(pose[:, 1:], "b v l c -> (b v) l c"),
                         rearrange(pos_ctx[:, 1:], "b v l c -> (b v) l c"))
            f2 = rearrange(f2, "(b v) l c -> b v l c", b=b, v=v-1)
            # store the result
            final_output.append(torch.cat((f1, f2), dim=1))

        # normalize last output
        del final_output[1]  # duplicate with final_output[0]
        last_feat = rearrange(final_output[-1], "b v l c -> (b v) l c")
        last_feat = self.dec_norm(last_feat)
        final_output[-1] = rearrange(last_feat, "(b v) l c -> b v l c", b=b, v=v)
        return final_output

    def forward(self,
                context: dict,
                symmetrize_batch=False,
                return_views=False,
                ):
        b, v, _, h, w = context["image"].shape
        images_all = context["image"]

        # camera embedding in the encoder
        if self.intrinsics_embed_loc == 'encoder' and self.intrinsics_embed_type == 'pixelwise':
            intrinsic_embedding = get_intrinsic_embedding(context, degree=self.intrinsics_embed_degree)
            images_all = torch.cat((images_all, intrinsic_embedding), dim=2)

        intrinsic_embedding_all = None
        if self.intrinsics_embed_loc == 'encoder' and (self.intrinsics_embed_type == 'token' or self.intrinsics_embed_type == 'linear'):
            intrinsic_embedding = self.intrinsic_encoder(context["intrinsics"].flatten(2))
            intrinsic_embedding_all = rearrange(intrinsic_embedding, "b v c -> (b v) c").unsqueeze(1)

        # step 1: encoder input images
        images_all = rearrange(images_all, "b v c h w -> (b v) c h w")
        shape_all = torch.tensor(images_all.shape[-2:])[None].repeat(b*v, 1)

        feat, pose, _ = self._encode_image(images_all, shape_all, intrinsic_embedding_all)

        feat = rearrange(feat, "(b v) l c -> b v l c", b=b, v=v)
        pose = rearrange(pose, "(b v) l c -> b v l c", b=b, v=v)

        # step 2: decoder
        dec_feat = self._decoder(feat, pose)
        shape = rearrange(shape_all, "(b v) c -> b v c", b=b, v=v)
        images = rearrange(images_all, "(b v) c h w -> b v c h w", b=b, v=v)

        if self.intrinsics_embed_loc == 'encoder' and self.intrinsics_embed_type == 'token':
            dec_feat = list(dec_feat)
            for i in range(len(dec_feat)):
                dec_feat[i] = dec_feat[i][:, :, :-1]

        return dec_feat, shape, images

    @property
    def patch_size(self) -> int:
        return 16

    @property
    def d_out(self) -> int:
        return 1024