File size: 6,531 Bytes
2568013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
from dataclasses import dataclass
from typing import Optional

import torch
import torch.nn.functional as F
from einops import einsum, rearrange
from jaxtyping import Float
from torch import Tensor, nn

from src.geometry.projection import get_world_rays
from src.misc.sh_rotation import rotate_sh
from .gaussians import build_covariance

from ...types import Gaussians

@dataclass
class GaussianAdapterCfg:
    gaussian_scale_min: float
    gaussian_scale_max: float
    sh_degree: int


class GaussianAdapter(nn.Module):
    cfg: GaussianAdapterCfg

    def __init__(self, cfg: GaussianAdapterCfg):
        super().__init__()
        self.cfg = cfg

        # Create a mask for the spherical harmonics coefficients. This ensures that at
        # initialization, the coefficients are biased towards having a large DC
        # component and small view-dependent components.
        self.register_buffer(
            "sh_mask",
            torch.ones((self.d_sh,), dtype=torch.float32),
            persistent=False,
        )
        for degree in range(1, self.cfg.sh_degree + 1):
            self.sh_mask[degree**2 : (degree + 1) ** 2] = 0.1 * 0.25**degree

    def forward(
        self,
        extrinsics: Float[Tensor, "*#batch 4 4"],
        intrinsics: Float[Tensor, "*#batch 3 3"],
        coordinates: Float[Tensor, "*#batch 2"],
        depths: Float[Tensor, "*#batch"],
        opacities: Float[Tensor, "*#batch"],
        raw_gaussians: Float[Tensor, "*#batch _"],
        image_shape: tuple[int, int],
        eps: float = 1e-8,
    ) -> Gaussians:
        device = extrinsics.device
        scales, rotations, sh = raw_gaussians.split((3, 4, 3 * self.d_sh), dim=-1)
        
        # Map scale features to valid scale range.
        scale_min = self.cfg.gaussian_scale_min
        scale_max = self.cfg.gaussian_scale_max
        scales = scale_min + (scale_max - scale_min) * scales.sigmoid()
        h, w = image_shape
        pixel_size = 1 / torch.tensor((w, h), dtype=torch.float32, device=device)
        multiplier = self.get_scale_multiplier(intrinsics, pixel_size)
        scales = scales * depths[..., None] * multiplier[..., None]

        # Normalize the quaternion features to yield a valid quaternion.
        rotations = rotations / (rotations.norm(dim=-1, keepdim=True) + eps)

        sh = rearrange(sh, "... (xyz d_sh) -> ... xyz d_sh", xyz=3)
        sh = sh.broadcast_to((*opacities.shape, 3, self.d_sh)) * self.sh_mask

        # Create world-space covariance matrices.
        covariances = build_covariance(scales, rotations)
        c2w_rotations = extrinsics[..., :3, :3]
        covariances = c2w_rotations @ covariances @ c2w_rotations.transpose(-1, -2)

        # Compute Gaussian means.
        origins, directions = get_world_rays(coordinates, extrinsics, intrinsics)
        means = origins + directions * depths[..., None]

        return Gaussians(
            means=means,
            covariances=covariances,
            # harmonics=rotate_sh(sh, c2w_rotations[..., None, :, :]),
            harmonics=sh,
            opacities=opacities,
            # Note: These aren't yet rotated into world space, but they're only used for
            # exporting Gaussians to ply files. This needs to be fixed...
            scales=scales,
            rotations=rotations.broadcast_to((*scales.shape[:-1], 4)),
        )
        
    def get_scale_multiplier(
        self,
        intrinsics: Float[Tensor, "*#batch 3 3"],
        pixel_size: Float[Tensor, "*#batch 2"],
        multiplier: float = 0.1,
    ) -> Float[Tensor, " *batch"]:
        xy_multipliers = multiplier * einsum(
            intrinsics[..., :2, :2].inverse(),
            pixel_size,
            "... i j, j -> ... i",
        )
        return xy_multipliers.sum(dim=-1)

    @property
    def d_sh(self) -> int:
        return (self.cfg.sh_degree + 1) ** 2

    @property
    def d_in(self) -> int:
        return 7 + 3 * self.d_sh


class UnifiedGaussianAdapter(GaussianAdapter):
    def forward(
        self,
        means: Float[Tensor, "*#batch 3"],
        # levels: Float[Tensor, "*#batch"],
        depths: Float[Tensor, "*#batch"],
        opacities: Float[Tensor, "*#batch"],
        raw_gaussians: Float[Tensor, "*#batch _"],
        eps: float = 1e-8,
        intrinsics: Optional[Float[Tensor, "*#batch 3 3"]] = None,
        coordinates: Optional[Float[Tensor, "*#batch 2"]] = None,
    ) -> Gaussians:
        scales, rotations, sh = raw_gaussians.split((3, 4, 3 * self.d_sh), dim=-1)
        
        scales = 0.001 * F.softplus(scales)
        scales = scales.clamp_max(0.3)
        
        # Normalize the quaternion features to yield a valid quaternion.
        rotations = rotations / (rotations.norm(dim=-1, keepdim=True) + eps)
        
        sh = rearrange(sh, "... (xyz d_sh) -> ... xyz d_sh", xyz=3)
        sh = sh.broadcast_to((*opacities.shape, 3, self.d_sh)) * self.sh_mask
        # print(scales.max())
        covariances = build_covariance(scales, rotations)
        
        return Gaussians(
            means=means.float(),
            # levels=levels.int(),
            covariances=covariances.float(),
            harmonics=sh.float(),
            opacities=opacities.float(),
            scales=scales.float(),
            rotations=rotations.float(),
        )

class Unet3dGaussianAdapter(GaussianAdapter):
    def forward(
        self,
        means: Float[Tensor, "*#batch 3"],
        depths: Float[Tensor, "*#batch"],
        opacities: Float[Tensor, "*#batch"],
        raw_gaussians: Float[Tensor, "*#batch _"],
        eps: float = 1e-8,
        intrinsics: Optional[Float[Tensor, "*#batch 3 3"]] = None,
        coordinates: Optional[Float[Tensor, "*#batch 2"]] = None,
    ) -> Gaussians:
        scales, rotations, sh = raw_gaussians.split((3, 4, 3 * self.d_sh), dim=-1)
        
        scales = 0.001 * F.softplus(scales)
        scales = scales.clamp_max(0.3)
        
        # Normalize the quaternion features to yield a valid quaternion.
        rotations = rotations / (rotations.norm(dim=-1, keepdim=True) + eps)
        
        sh = rearrange(sh, "... (xyz d_sh) -> ... xyz d_sh", xyz=3)
        sh = sh.broadcast_to((*opacities.shape, 3, self.d_sh)) * self.sh_mask

        covariances = build_covariance(scales, rotations)
        
        return Gaussians(
            means=means,
            covariances=covariances,
            harmonics=sh,
            opacities=opacities,
            scales=scales,
            rotations=rotations,
        )