File size: 12,694 Bytes
2568013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# dpt head implementation for DUST3R
# Downstream heads assume inputs of size B x N x C (where N is the number of tokens) ;
# or if it takes as input the output at every layer, the attribute return_all_layers should be set to True
# the forward function also takes as input a dictionnary img_info with key "height" and "width"
# for PixelwiseTask, the output will be of dimension B x num_channels x H x W
# --------------------------------------------------------
from einops import rearrange
from typing import List
import torch
import torch.nn as nn
import torch.nn.functional as F
# import dust3r.utils.path_to_croco
from .dpt_block import DPTOutputAdapter, Interpolate, make_fusion_block
from .head_modules import UnetExtractor, AppearanceTransformer, _init_weights
from .postprocess import postprocess

# class DPTOutputAdapter_fix(DPTOutputAdapter):
#     """
#     Adapt croco's DPTOutputAdapter implementation for dust3r:
#     remove duplicated weigths, and fix forward for dust3r
#     """
#
#     def init(self, dim_tokens_enc=768):
#         super().init(dim_tokens_enc)
#         # these are duplicated weights
#         del self.act_1_postprocess
#         del self.act_2_postprocess
#         del self.act_3_postprocess
#         del self.act_4_postprocess
#
#         self.scratch.refinenet1 = make_fusion_block(256 * 2, False, 1, expand=True)
#         self.scratch.refinenet2 = make_fusion_block(256 * 2, False, 1, expand=True)
#         self.scratch.refinenet3 = make_fusion_block(256 * 2, False, 1, expand=True)
#         # self.scratch.refinenet4 = make_fusion_block(256 * 2, False, 1)
#
#         self.depth_encoder = UnetExtractor(in_channel=3)
#         self.feat_up = Interpolate(scale_factor=2, mode="bilinear", align_corners=True)
#         self.out_conv = nn.Conv2d(256+3+4, 256, kernel_size=3, padding=1)
#         self.out_relu = nn.ReLU(inplace=True)
#
#         self.input_merger = nn.Sequential(
#             # nn.Conv2d(256+3+3+1, 256, kernel_size=3, padding=1),
#             nn.Conv2d(256+3+3, 256, kernel_size=3, padding=1),
#             nn.ReLU(),
#         )
#
#     def forward(self, encoder_tokens: List[torch.Tensor], depths, imgs, image_size=None, conf=None):
#         assert self.dim_tokens_enc is not None, 'Need to call init(dim_tokens_enc) function first'
#         # H, W = input_info['image_size']
#         image_size = self.image_size if image_size is None else image_size
#         H, W = image_size
#         # Number of patches in height and width
#         N_H = H // (self.stride_level * self.P_H)
#         N_W = W // (self.stride_level * self.P_W)
#           
#         # Hook decoder onto 4 layers from specified ViT layers
#         layers = [encoder_tokens[hook] for hook in self.hooks]
#
#         # Extract only task-relevant tokens and ignore global tokens.
#         layers = [self.adapt_tokens(l) for l in layers]
#
#         # Reshape tokens to spatial representation
#         layers = [rearrange(l, 'b (nh nw) c -> b c nh nw', nh=N_H, nw=N_W) for l in layers]
#
#         layers = [self.act_postprocess[idx](l) for idx, l in enumerate(layers)]
#         # Project layers to chosen feature dim
#         layers = [self.scratch.layer_rn[idx](l) for idx, l in enumerate(layers)]
#
#         # get depth features
#         depth_features = self.depth_encoder(depths)
#         depth_feature1, depth_feature2, depth_feature3 = depth_features
#
#         # Fuse layers using refinement stages
#         path_4 = self.scratch.refinenet4(layers[3])[:, :, :layers[2].shape[2], :layers[2].shape[3]]
#         path_3 = self.scratch.refinenet3(torch.cat([path_4, depth_feature3], dim=1), torch.cat([layers[2], depth_feature3], dim=1))
#         path_2 = self.scratch.refinenet2(torch.cat([path_3, depth_feature2], dim=1), torch.cat([layers[1], depth_feature2], dim=1))
#         path_1 = self.scratch.refinenet1(torch.cat([path_2, depth_feature1], dim=1), torch.cat([layers[0], depth_feature1], dim=1))
#         # path_3 = self.scratch.refinenet3(path_4, layers[2], depth_feature3)
#         # path_2 = self.scratch.refinenet2(path_3, layers[1], depth_feature2)
#         # path_1 = self.scratch.refinenet1(path_2, layers[0], depth_feature1)
#
#         path_1 = self.feat_up(path_1)
#         path_1 = torch.cat([path_1, imgs, depths], dim=1)
#         if conf is not None:
#             path_1 = torch.cat([path_1, conf], dim=1)
#         path_1 = self.input_merger(path_1)
#
#         # Output head
#         out = self.head(path_1)
#
#         return out


class DPTOutputAdapter_fix(DPTOutputAdapter):
    """
    Adapt croco's DPTOutputAdapter implementation for dust3r:
    remove duplicated weigths, and fix forward for dust3r
    """

    def init(self, dim_tokens_enc=768):
        super().init(dim_tokens_enc)
        # these are duplicated weights
        del self.act_1_postprocess
        del self.act_2_postprocess
        del self.act_3_postprocess
        del self.act_4_postprocess
        
        self.feat_up = Interpolate(scale_factor=2, mode="bilinear", align_corners=True)
        self.input_merger = nn.Sequential(
            # nn.Conv2d(256+3+3+1, 256, kernel_size=3, padding=1),
            # nn.Conv2d(3+6, 256, 7, 1, 3),
            nn.Conv2d(3, 256, 7, 1, 3),
            nn.ReLU(),
        )
        
    def forward(self, encoder_tokens: List[torch.Tensor], depths, imgs, image_size=None, conf=None):
        assert self.dim_tokens_enc is not None, 'Need to call init(dim_tokens_enc) function first'
        # H, W = input_info['image_size']
        image_size = self.image_size if image_size is None else image_size
        H, W = image_size
        # Number of patches in height and width
        N_H = H // (self.stride_level * self.P_H)
        N_W = W // (self.stride_level * self.P_W)

        # Hook decoder onto 4 layers from specified ViT layers
        layers = [encoder_tokens[hook] for hook in self.hooks]

        # Extract only task-relevant tokens and ignore global tokens.
        layers = [self.adapt_tokens(l) for l in layers]

        # Reshape tokens to spatial representation
        layers = [rearrange(l, 'b (nh nw) c -> b c nh nw', nh=N_H, nw=N_W) for l in layers]

        layers = [self.act_postprocess[idx](l) for idx, l in enumerate(layers)]
        # Project layers to chosen feature dim
        layers = [self.scratch.layer_rn[idx](l) for idx, l in enumerate(layers)]
        
        # Fuse layers using refinement stages
        path_4 = self.scratch.refinenet4(layers[3])[:, :, :layers[2].shape[2], :layers[2].shape[3]]
        path_3 = self.scratch.refinenet3(path_4, layers[2])
        path_2 = self.scratch.refinenet2(path_3, layers[1])
        path_1 = self.scratch.refinenet1(path_2, layers[0])

        direct_img_feat = self.input_merger(imgs)
        # imgs = imgs.permute(0, 2, 3, 1).flatten(1, 2).contiguous()
        # # Pachify
        # patch_size = self.patch_size
        # hh = H // patch_size[0]
        # ww = W // patch_size[1]
        # direct_img_feat = rearrange(imgs, "b (hh ph ww pw) d -> b (hh ww) (ph pw d)", hh=hh, ww=ww, ph=patch_size[0], pw=patch_size[1])

        # actually, we just do interpolate here
        # path_1 = self.feat_up(path_1)
        path_1 = F.interpolate(path_1, size=(H, W), mode='bilinear', align_corners=True)
        path_1 = path_1 + direct_img_feat
        
        # path_1 = torch.cat([path_1, imgs], dim=1)

        # Output head
        out = self.head(path_1)
        
        return out, [path_4, path_3, path_2]


class PixelwiseTaskWithDPT(nn.Module):
    """ DPT module for dust3r, can return 3D points + confidence for all pixels"""

    def __init__(self, *, n_cls_token=0, hooks_idx=None, dim_tokens=None,
                 output_width_ratio=1, num_channels=1, postprocess=None, depth_mode=None, conf_mode=None, **kwargs):
        super(PixelwiseTaskWithDPT, self).__init__()
        self.return_all_layers = True  # backbone needs to return all layers
        self.postprocess = postprocess
        self.depth_mode = depth_mode
        self.conf_mode = conf_mode
        
        assert n_cls_token == 0, "Not implemented"
        dpt_args = dict(output_width_ratio=output_width_ratio,
                        num_channels=num_channels,
                        **kwargs)
        if hooks_idx is not None:
            dpt_args.update(hooks=hooks_idx)
        self.dpt = DPTOutputAdapter_fix(**dpt_args)
        dpt_init_args = {} if dim_tokens is None else {'dim_tokens_enc': dim_tokens}
        self.dpt.init(**dpt_init_args)

    def forward(self, x, depths, imgs, img_info, conf=None):
        out, interm_feats = self.dpt(x, depths, imgs, image_size=(img_info[0], img_info[1]), conf=conf)
        if self.postprocess:
            out = self.postprocess(out, self.depth_mode, self.conf_mode)
        return out, interm_feats
    
class AttnBasedAppearanceHead(nn.Module):
    """
    Attention head Appearence Reconstruction
    """

    def __init__(self, num_channels, patch_size, feature_dim, last_dim, hooks_idx, dim_tokens, postprocess, depth_mode, conf_mode, head_type='gs_params'):
        super().__init__()

        self.num_channels = num_channels
        self.patch_size = patch_size

        self.hooks = hooks_idx

        assert len(set(dim_tokens)) == 1

        self.tokenizer = nn.Linear(3 * self.patch_size[0] ** 2, dim_tokens[0], bias=False)

        self.attn_processor = AppearanceTransformer(num_layers=4, attn_dim=dim_tokens[0] * 2, head_dim=feature_dim)

        self.token_decoder = nn.Sequential(
            nn.LayerNorm(dim_tokens[0] * 2, bias=False),
            nn.Linear(
                dim_tokens[0] * 2, self.num_channels * (self.patch_size[0] ** 2),
                bias=False,
            )
        )
        self.token_decoder.apply(_init_weights)


    def img_pts_tokenizer(self, imgs, pts3d):
        B, V, _, H, W = imgs.shape
        pts3d = pts3d.flatten(2, 3).contiguous()
        imgs = imgs.permute(0, 1, 3, 4, 2).flatten(2, 3).contiguous()
        mean = pts3d.mean(dim=-2, keepdim=True) # (B, V, 1, 3)
        z_median = torch.median(torch.norm(pts3d, dim=-1, keepdim=True), dim=2, keepdim=True)[0] # (B, V, 1, 1)
        pts3d_normed = (pts3d - mean) / (z_median + 1e-8) # (B, V, N, 3)

        input = imgs #torch.cat([pts3d_normed, imgs], dim=-1) # (B, V, H*W, 9)
        # Pachify
        patch_size = self.patch_size
        hh = H // patch_size[0]
        ww = W // patch_size[1]
        input = rearrange(input, "b v (hh ph ww pw) d -> (b v) (hh ww) (ph pw d)", hh=hh, ww=ww, ph=patch_size[0], pw=patch_size[1])
        # Tokenize the input images
        input_tokens = self.tokenizer(input)
        return input_tokens

    def forward(self, x, depths, imgs, img_info, conf=None):
        B, V, H, W = img_info
        input_tokens = rearrange(self.img_pts_tokenizer(imgs, depths), "(b v) l d -> b (v l) d", b=B, v=V)

        # Hook decoder onto 4 layers from specified ViT layers
        layer_tokens = [rearrange(x[hook].detach(), "(b v) l d -> b (v l) d", b=B, v=V) for hook in self.hooks]

        tokens = self.attn_processor(torch.cat([input_tokens, layer_tokens[-1]], dim=-1))

        gaussian_params = self.token_decoder(tokens)

        patch_size = self.patch_size
        hh = H // patch_size[0]
        ww = W // patch_size[1]
        gaussians = rearrange(gaussian_params, "b (v hh ww) (ph pw d) -> b (v hh ph ww pw) d", v=V, hh=hh, ww=ww, ph=patch_size[0], pw=patch_size[1])
        return gaussians.view(B, V, H*W, -1)

def create_gs_dpt_head(net, has_conf=False, out_nchan=3, postprocess_func=postprocess):
    """
    return PixelwiseTaskWithDPT for given net params
    """
    assert net.dec_depth > 9
    l2 = net.dec_depth
    feature_dim = net.feature_dim
    last_dim = feature_dim//2
    ed = net.enc_embed_dim
    dd = net.dec_embed_dim
    try:    
        patch_size = net.patch_size
    except:
        patch_size = (16, 16)

    return PixelwiseTaskWithDPT(num_channels=out_nchan + has_conf,
                                patch_size=patch_size,
                                feature_dim=feature_dim,
                                last_dim=last_dim,
                                hooks_idx=[0, l2*2//4, l2*3//4, l2],
                                dim_tokens=[ed, dd, dd, dd],
                                postprocess=postprocess_func,
                                depth_mode=net.depth_mode,
                                conf_mode=net.conf_mode,
                                head_type='gs_params')