File size: 11,760 Bytes
2568013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import torch
import torch.nn as nn
import torch.nn.functional as F

import torch
import torch.nn as nn
import xformers.ops as xops
from einops import rearrange
from torch.nn import functional as F
import numbers

class RMSNorm(nn.Module):
    def __init__(self, dim, eps=1e-6):
        super(RMSNorm, self).__init__()
        self.eps = eps
        self.scale = nn.Parameter(torch.ones(dim))

    def forward(self, x):
        rms = torch.sqrt(torch.mean(x**2, dim=-1, keepdim=True) + self.eps)
        return self.scale * x / rms


class ResidualBlock(nn.Module):
    def __init__(self, in_planes, planes, norm_fn='group', stride=1):
        super(ResidualBlock, self).__init__()

        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, padding=1, stride=stride)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1)
        self.relu = nn.ReLU(inplace=True)

        num_groups = planes // 8

        if norm_fn == 'group':
            self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
            self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
            if not (stride == 1 and in_planes == planes):
                self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)

        elif norm_fn == 'batch':
            self.norm1 = nn.BatchNorm2d(planes)
            self.norm2 = nn.BatchNorm2d(planes)
            if not (stride == 1 and in_planes == planes):
                self.norm3 = nn.BatchNorm2d(planes)

        elif norm_fn == 'instance':
            self.norm1 = nn.InstanceNorm2d(planes)
            self.norm2 = nn.InstanceNorm2d(planes)
            if not (stride == 1 and in_planes == planes):
                self.norm3 = nn.InstanceNorm2d(planes)

        elif norm_fn == 'none':
            self.norm1 = nn.Sequential()
            self.norm2 = nn.Sequential()
            if not (stride == 1 and in_planes == planes):
                self.norm3 = nn.Sequential()

        if stride == 1 and in_planes == planes:
            self.downsample = None

        else:
            self.downsample = nn.Sequential(
                nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm3)

    def forward(self, x):
        y = x
        y = self.conv1(y)
        y = self.norm1(y)
        y = self.relu(y)
        y = self.conv2(y)
        y = self.norm2(y)
        y = self.relu(y)

        if self.downsample is not None:
            x = self.downsample(x)

        return self.relu(x + y)


class UnetExtractor(nn.Module):
    def __init__(self, in_channel=3, encoder_dim=[256, 256, 256], norm_fn='group'):
        super().__init__()
        self.in_ds = nn.Sequential(
            nn.Conv2d(in_channel, 64, kernel_size=7, stride=2, padding=3),
            nn.GroupNorm(num_groups=8, num_channels=64),
            nn.ReLU(inplace=True)
        )

        self.res1 = nn.Sequential(
            ResidualBlock(64, encoder_dim[0], stride=2, norm_fn=norm_fn),
            ResidualBlock(encoder_dim[0], encoder_dim[0], norm_fn=norm_fn)
        )
        self.res2 = nn.Sequential(
            ResidualBlock(encoder_dim[0], encoder_dim[1], stride=2, norm_fn=norm_fn),
            ResidualBlock(encoder_dim[1], encoder_dim[1], norm_fn=norm_fn)
        )
        self.res3 = nn.Sequential(
            ResidualBlock(encoder_dim[1], encoder_dim[2], stride=2, norm_fn=norm_fn),
            ResidualBlock(encoder_dim[2], encoder_dim[2], norm_fn=norm_fn),
        )

    def forward(self, x):
        x = self.in_ds(x)
        x1 = self.res1(x)
        x2 = self.res2(x1)
        x3 = self.res3(x2)

        return x1, x2, x3


class MultiBasicEncoder(nn.Module):
    def __init__(self, output_dim=[128], encoder_dim=[64, 96, 128]):
        super(MultiBasicEncoder, self).__init__()
        
        # output convolution for feature
        self.conv2 = nn.Sequential(
            ResidualBlock(encoder_dim[2], encoder_dim[2], stride=1),
            nn.Conv2d(encoder_dim[2], encoder_dim[2] * 2, 3, padding=1))

        # output convolution for context
        output_list = []
        for dim in output_dim:
            conv_out = nn.Sequential(
                ResidualBlock(encoder_dim[2], encoder_dim[2], stride=1),
                nn.Conv2d(encoder_dim[2], dim[2], 3, padding=1))
            output_list.append(conv_out)

        self.outputs08 = nn.ModuleList(output_list)

    def forward(self, x):
        feat1, feat2 = self.conv2(x).split(dim=0, split_size=x.shape[0] // 2)

        outputs08 = [f(x) for f in self.outputs08]
        return outputs08, feat1, feat2
    


# attention processor for appreaance head

def _init_weights(m):
    if isinstance(m, nn.Linear):
        nn.init.normal_(m.weight, std=.02)
        if m.bias is not None:
            nn.init.constant_(m.bias, 0)

class Mlp(nn.Module):
    def __init__(self, in_features, mlp_ratio=4., mlp_bias=False, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = int(in_features * mlp_ratio)
        self.fc1 = nn.Linear(in_features, hidden_features, bias=mlp_bias)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features, bias=mlp_bias)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        """
        x: (B, L, D)
        Returns: same shape as input 
        """
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x

class SelfAttention(nn.Module):
    def __init__(self, dim, head_dim=64, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., use_flashatt_v2=True):
        super().__init__()
        assert dim % head_dim == 0, 'dim must be divisible by head_dim'
        self.num_heads = dim // head_dim
        self.scale = qk_scale or head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop_p = attn_drop
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim, bias=False)
        self.proj_drop = nn.Dropout(proj_drop)

        self.norm_q = RMSNorm(head_dim, eps=1e-5)
        self.norm_k = RMSNorm(head_dim, eps=1e-5)

        self.use_flashatt_v2 = use_flashatt_v2

    def forward(self, x):
        """
        x: (B, L, D)
        Returns: same shape as input 
        """
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)

        if self.use_flashatt_v2:
            qkv = qkv.permute(2, 0, 1, 3, 4)
            q, k, v = qkv[0], qkv[1], qkv[2] # (B, N, H, C)
            q, k = self.norm_q(q).to(v.dtype), self.norm_k(k).to(v.dtype)
            x = xops.memory_efficient_attention(q, k, v, op=(xops.fmha.flash.FwOp, xops.fmha.flash.BwOp), p=self.attn_drop_p)
            x = rearrange(x, 'b n h d -> b n (h d)')

        x = self.proj(x)
        x = self.proj_drop(x)
        return x
            
class CrossAttention(nn.Module):
    def __init__(self, dim, head_dim=64, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., use_flashatt_v2=True):
        super().__init__()
        assert dim % head_dim == 0, 'dim must be divisible by head_dim'
        self.num_heads = dim // head_dim
        self.scale = qk_scale or head_dim ** -0.5

        self.q = nn.Linear(dim, dim, bias=qkv_bias)
        self.k = nn.Linear(dim, dim, bias=qkv_bias)
        self.v = nn.Linear(dim, dim, bias=qkv_bias)
        
        self.attn_drop_p = attn_drop
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim, bias=False)
        self.proj_drop = nn.Dropout(proj_drop)

        self.norm_q = RMSNorm(head_dim, eps=1e-5)
        self.norm_k = RMSNorm(head_dim, eps=1e-5)

        self.use_flashatt_v2 = use_flashatt_v2

    def forward(self, x_q, x_kv):
        """
        x_q: query input (B, L_q, D)
        x_kv: key-value input (B, L_kv, D)
        Returns: same shape as query input (B, L_q, D)
        """
        B, N_q, C = x_q.shape
        _, N_kv, _ = x_kv.shape

        q = self.q(x_q).reshape(B, N_q, self.num_heads, C // self.num_heads)
        k = self.k(x_kv).reshape(B, N_kv, self.num_heads, C // self.num_heads)
        v = self.v(x_kv).reshape(B, N_kv, self.num_heads, C // self.num_heads)
        
        if self.use_flashatt_v2:
            q, k = self.norm_q(q).to(v.dtype), self.norm_k(k).to(v.dtype)
            x = xops.memory_efficient_attention(
                q, k, v, 
                op=(xops.fmha.flash.FwOp, xops.fmha.flash.BwOp),
                p=self.attn_drop_p
            )
            x = rearrange(x, 'b n h d -> b n (h d)')

        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class TransformerBlockSelfAttn(nn.Module):
    def __init__(self, dim, head_dim, mlp_ratio=4., mlp_bias=False, qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_flashatt_v2=True):
        super().__init__()
        self.norm1 = norm_layer(dim, bias=False)
        self.attn = SelfAttention(
            dim, head_dim=head_dim, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, use_flashatt_v2=use_flashatt_v2)
        self.norm2 = norm_layer(dim, bias=False)
        self.mlp = Mlp(in_features=dim, mlp_ratio=mlp_ratio, mlp_bias=mlp_bias, act_layer=act_layer, drop=drop)

    def forward(self, x):
        """
        x: (B, L, D)
        Returns: same shape as input
        """
        y = self.attn(self.norm1(x))
        x = x + y
        x = x + self.mlp(self.norm2(x))
        return x
    
class TransformerBlockCrossAttn(nn.Module):
    def __init__(self, dim, head_dim, mlp_ratio=4., mlp_bias=False, qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_flashatt_v2=True):
        super().__init__()
        self.norm1 = norm_layer(dim, bias=False)
        self.attn = CrossAttention(
            dim, head_dim=head_dim, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, use_flashatt_v2=use_flashatt_v2)
        self.norm2 = norm_layer(dim, bias=False)
        self.mlp = Mlp(in_features=dim, mlp_ratio=mlp_ratio, mlp_bias=mlp_bias, act_layer=act_layer, drop=drop)

    def forward(self, x_list):
        """
        x_q: (B, L_q, D)
        x_kv: (B, L_kv, D)
        Returns: same shape as input
        """
        x_q, x_kv = x_list
        y = self.attn(self.norm1(x_q), self.norm1(x_kv))
        x = x_q + y   
        x = x + self.mlp(self.norm2(x))
        return x

class AppearanceTransformer(nn.Module):
    def __init__(self, num_layers, attn_dim, head_dim, ca_incides=[1, 3, 5, 7]):
        super().__init__()
        self.attn_dim = attn_dim
        self.num_layers = num_layers
        self.blocks = nn.ModuleList()
        self.ca_incides = ca_incides

        for attn_index in range(num_layers):
            self.blocks.append(TransformerBlockSelfAttn(self.attn_dim, head_dim))
            self.blocks[-1].apply(_init_weights)

    def forward(self, x, use_checkpoint=True):
        """
        input_tokens: (B, L, D)
        aggregated_tokens: List of (B, L, D)
        Returns: B and D remain the same, L might change if there are merge layers
        """
        for block in self.blocks:
            if use_checkpoint:
                x = torch.utils.checkpoint.checkpoint(block, x, use_reentrant=False)
            else:
                x = block(x)

        return x


if __name__ == '__main__':
    data = torch.ones((1, 3, 1024, 1024))

    model = UnetExtractor(in_channel=3, encoder_dim=[64, 96, 128])

    x1, x2, x3 = model(data)
    print(x1.shape, x2.shape, x3.shape)