File size: 34,019 Bytes
2568013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 |
from dataclasses import dataclass
from pathlib import Path
import gc
import random
from typing import Literal, Optional, Protocol, runtime_checkable, Any
import moviepy.editor as mpy
import torch
import torchvision
import wandb
from einops import pack, rearrange, repeat
from jaxtyping import Float
from lightning.pytorch import LightningModule
from lightning.pytorch.loggers.wandb import WandbLogger
from lightning.pytorch.utilities import rank_zero_only
from tabulate import tabulate
from torch import Tensor, nn, optim
import torch.nn.functional as F
from loss.loss_lpips import LossLpips
from loss.loss_mse import LossMse
from model.encoder.vggt.utils.pose_enc import pose_encoding_to_extri_intri
from ..loss.loss_distill import DistillLoss
from src.utils.render import generate_path
from src.utils.point import get_normal_map
from ..loss.loss_huber import HuberLoss, extri_intri_to_pose_encoding
# from model.types import Gaussians
from ..dataset.data_module import get_data_shim
from ..dataset.types import BatchedExample
from ..evaluation.metrics import compute_lpips, compute_psnr, compute_ssim, abs_relative_difference, delta1_acc
from ..global_cfg import get_cfg
from ..loss import Loss
from ..loss.loss_point import Regr3D
from ..loss.loss_ssim import ssim
from ..misc.benchmarker import Benchmarker
from ..misc.cam_utils import update_pose, get_pnp_pose, rotation_6d_to_matrix
from ..misc.image_io import prep_image, save_image, save_video
from ..misc.LocalLogger import LOG_PATH, LocalLogger
from ..misc.nn_module_tools import convert_to_buffer
from ..misc.step_tracker import StepTracker
from ..misc.utils import inverse_normalize, vis_depth_map, confidence_map, get_overlap_tag
from ..visualization.annotation import add_label
from ..visualization.camera_trajectory.interpolation import (
interpolate_extrinsics,
interpolate_intrinsics,
)
from ..visualization.camera_trajectory.wobble import (
generate_wobble,
generate_wobble_transformation,
)
from ..visualization.color_map import apply_color_map_to_image
from ..visualization.layout import add_border, hcat, vcat
# from ..visualization.validation_in_3d import render_cameras, render_projections
from .decoder.decoder import Decoder, DepthRenderingMode
from .encoder import Encoder
from .encoder.visualization.encoder_visualizer import EncoderVisualizer
from .ply_export import export_ply
@dataclass
class OptimizerCfg:
lr: float
warm_up_steps: int
backbone_lr_multiplier: float
@dataclass
class TestCfg:
output_path: Path
align_pose: bool
pose_align_steps: int
rot_opt_lr: float
trans_opt_lr: float
compute_scores: bool
save_image: bool
save_video: bool
save_compare: bool
generate_video: bool
mode: Literal["inference", "evaluation"]
image_folder: str
@dataclass
class TrainCfg:
output_path: Path
depth_mode: DepthRenderingMode | None
extended_visualization: bool
print_log_every_n_steps: int
distiller: str
distill_max_steps: int
pose_loss_alpha: float = 1.0
pose_loss_delta: float = 1.0
cxt_depth_weight: float = 0.01
weight_pose: float = 1.0
weight_depth: float = 1.0
weight_normal: float = 1.0
render_ba: bool = False
render_ba_after_step: int = 0
@runtime_checkable
class TrajectoryFn(Protocol):
def __call__(
self,
t: Float[Tensor, " t"],
) -> tuple[
Float[Tensor, "batch view 4 4"], # extrinsics
Float[Tensor, "batch view 3 3"], # intrinsics
]:
pass
class ModelWrapper(LightningModule):
logger: Optional[WandbLogger]
model: nn.Module
losses: nn.ModuleList
optimizer_cfg: OptimizerCfg
test_cfg: TestCfg
train_cfg: TrainCfg
step_tracker: StepTracker | None
def __init__(
self,
optimizer_cfg: OptimizerCfg,
test_cfg: TestCfg,
train_cfg: TrainCfg,
model: nn.Module,
losses: list[Loss],
step_tracker: StepTracker | None
) -> None:
super().__init__()
self.optimizer_cfg = optimizer_cfg
self.test_cfg = test_cfg
self.train_cfg = train_cfg
self.step_tracker = step_tracker
# Set up the model.
self.encoder_visualizer = None
self.model = model
self.data_shim = get_data_shim(self.model.encoder)
self.losses = nn.ModuleList(losses)
if self.model.encoder.pred_pose:
self.loss_pose = HuberLoss(alpha=self.train_cfg.pose_loss_alpha, delta=self.train_cfg.pose_loss_delta)
if self.model.encoder.distill:
self.loss_distill = DistillLoss(
delta=self.train_cfg.pose_loss_delta,
weight_pose=self.train_cfg.weight_pose,
weight_depth=self.train_cfg.weight_depth,
weight_normal=self.train_cfg.weight_normal
)
# This is used for testing.
self.benchmarker = Benchmarker()
def on_train_epoch_start(self) -> None:
# our custom dataset and sampler has to have epoch set by calling set_epoch
if hasattr(self.trainer.datamodule.train_loader.dataset, "set_epoch"):
self.trainer.datamodule.train_loader.dataset.set_epoch(self.current_epoch)
if hasattr(self.trainer.datamodule.train_loader.sampler, "set_epoch"):
self.trainer.datamodule.train_loader.sampler.set_epoch(self.current_epoch)
def on_validation_epoch_start(self) -> None:
print(f"Validation epoch start on rank {self.trainer.global_rank}")
# our custom dataset and sampler has to have epoch set by calling set_epoch
if hasattr(self.trainer.datamodule.val_loader.dataset, "set_epoch"):
self.trainer.datamodule.val_loader.dataset.set_epoch(self.current_epoch)
if hasattr(self.trainer.datamodule.val_loader.sampler, "set_epoch"):
self.trainer.datamodule.val_loader.sampler.set_epoch(self.current_epoch)
def training_step(self, batch, batch_idx):
# combine batch from different dataloaders
# torch.cuda.empty_cache()
if isinstance(batch, list):
batch_combined = None
for batch_per_dl in batch:
if batch_combined is None:
batch_combined = batch_per_dl
else:
for k in batch_combined.keys():
if isinstance(batch_combined[k], list):
batch_combined[k] += batch_per_dl[k]
elif isinstance(batch_combined[k], dict):
for kk in batch_combined[k].keys():
batch_combined[k][kk] = torch.cat([batch_combined[k][kk], batch_per_dl[k][kk]], dim=0)
else:
raise NotImplementedError
batch = batch_combined
batch: BatchedExample = self.data_shim(batch)
b, v, c, h, w = batch["context"]["image"].shape
context_image = (batch["context"]["image"] + 1) / 2
# Run the model.
visualization_dump = None
encoder_output, output = self.model(context_image, self.global_step, visualization_dump=visualization_dump)
gaussians, pred_pose_enc_list, depth_dict = encoder_output.gaussians, encoder_output.pred_pose_enc_list, encoder_output.depth_dict
pred_context_pose = encoder_output.pred_context_pose
infos = encoder_output.infos
distill_infos = encoder_output.distill_infos
num_context_views = pred_context_pose['extrinsic'].shape[1]
using_index = torch.arange(num_context_views, device=gaussians.means.device)
batch["using_index"] = using_index
target_gt = (batch["context"]["image"] + 1) / 2
scene_scale = infos["scene_scale"]
self.log("train/scene_scale", infos["scene_scale"])
self.log("train/voxelize_ratio", infos["voxelize_ratio"])
# Compute metrics.
psnr_probabilistic = compute_psnr(
rearrange(target_gt, "b v c h w -> (b v) c h w"),
rearrange(output.color, "b v c h w -> (b v) c h w"),
)
self.log("train/psnr_probabilistic", psnr_probabilistic.mean())
consis_absrel = abs_relative_difference(
rearrange(output.depth, "b v h w -> (b v) h w"),
rearrange(depth_dict['depth'].squeeze(-1), "b v h w -> (b v) h w"),
rearrange(distill_infos['conf_mask'], "b v h w -> (b v) h w"),
)
self.log("train/consis_absrel", consis_absrel.mean())
consis_delta1 = delta1_acc(
rearrange(output.depth, "b v h w -> (b v) h w"),
rearrange(depth_dict['depth'].squeeze(-1), "b v h w -> (b v) h w"),
rearrange(distill_infos['conf_mask'], "b v h w -> (b v) h w"),
)
self.log("train/consis_delta1", consis_delta1.mean())
# Compute and log loss.
total_loss = 0
depth_dict['distill_infos'] = distill_infos
with torch.amp.autocast('cuda', enabled=False):
for loss_fn in self.losses:
loss = loss_fn.forward(output, batch, gaussians, depth_dict, self.global_step)
self.log(f"loss/{loss_fn.name}", loss)
total_loss = total_loss + loss
if depth_dict is not None and "depth" in get_cfg()["loss"].keys() and self.train_cfg.cxt_depth_weight > 0:
depth_loss_idx = list(get_cfg()["loss"].keys()).index("depth")
depth_loss_fn = self.losses[depth_loss_idx].ctx_depth_loss
loss_depth = depth_loss_fn(depth_dict["depth_map"], depth_dict["depth_conf"], batch, cxt_depth_weight=self.train_cfg.cxt_depth_weight)
self.log("loss/ctx_depth", loss_depth)
total_loss = total_loss + loss_depth
if distill_infos is not None:
# distill ctx pred_pose & depth & normal
loss_distill_list = self.loss_distill(distill_infos, pred_pose_enc_list, output, batch)
self.log("loss/distill", loss_distill_list['loss_distill'])
self.log("loss/distill_pose", loss_distill_list['loss_pose'])
self.log("loss/distill_depth", loss_distill_list['loss_depth'])
self.log("loss/distill_normal", loss_distill_list['loss_normal'])
total_loss = total_loss + loss_distill_list['loss_distill']
self.log("loss/total", total_loss)
print(f"total_loss: {total_loss}")
# Skip batch if loss is too high after certain step
SKIP_AFTER_STEP = 1000
LOSS_THRESHOLD = 0.2
if self.global_step > SKIP_AFTER_STEP and total_loss > LOSS_THRESHOLD:
print(f"Skipping batch with high loss ({total_loss:.6f}) at step {self.global_step} on Rank {self.global_rank}")
# set to a really small number
return total_loss * 1e-10
if (
self.global_rank == 0
and self.global_step % self.train_cfg.print_log_every_n_steps == 0
):
print(
f"train step {self.global_step}; "
f"scene = {[x[:20] for x in batch['scene']]}; "
f"context = {batch['context']['index'].tolist()}; "
f"loss = {total_loss:.6f}; "
)
self.log("info/global_step", self.global_step) # hack for ckpt monitor
# Tell the data loader processes about the current step.
if self.step_tracker is not None:
self.step_tracker.set_step(self.global_step)
del batch
if self.global_step % 50 == 0:
gc.collect()
torch.cuda.empty_cache()
return total_loss
def on_after_backward(self):
total_norm = 0.0
counter = 0
for p in self.parameters():
if p.grad is not None:
param_norm = p.grad.detach().data.norm(2)
total_norm += param_norm.item() ** 2
counter += 1
total_norm = (total_norm / counter) ** 0.5
self.log("loss/grad_norm", total_norm)
def test_step(self, batch, batch_idx):
batch: BatchedExample = self.data_shim(batch)
b, v, _, h, w = batch["target"]["image"].shape
assert b == 1
if batch_idx % 100 == 0:
print(f"Test step {batch_idx:0>6}.")
# Render Gaussians.
with self.benchmarker.time("encoder"):
gaussians = self.model.encoder(
(batch["context"]["image"]+1)/2,
self.global_step,
)[0]
# export_ply(gaussians.means[0], gaussians.scales[0], gaussians.rotations[0], gaussians.harmonics[0], gaussians.opacities[0], Path("gaussians.ply"))
# align the target pose
if self.test_cfg.align_pose:
output = self.test_step_align(batch, gaussians)
else:
with self.benchmarker.time("decoder", num_calls=v):
output = self.model.decoder.forward(
gaussians,
batch["target"]["extrinsics"],
batch["target"]["intrinsics"],
batch["target"]["near"],
batch["target"]["far"],
(h, w),
)
# compute scores
if self.test_cfg.compute_scores:
overlap = batch["context"]["overlap"][0]
overlap_tag = get_overlap_tag(overlap)
rgb_pred = output.color[0]
rgb_gt = batch["target"]["image"][0]
all_metrics = {
f"lpips_ours": compute_lpips(rgb_gt, rgb_pred).mean(),
f"ssim_ours": compute_ssim(rgb_gt, rgb_pred).mean(),
f"psnr_ours": compute_psnr(rgb_gt, rgb_pred).mean(),
}
methods = ['ours']
self.log_dict(all_metrics)
self.print_preview_metrics(all_metrics, methods, overlap_tag=overlap_tag)
# Save images.
(scene,) = batch["scene"]
name = get_cfg()["wandb"]["name"]
path = self.test_cfg.output_path / name
if self.test_cfg.save_image:
for index, color in zip(batch["target"]["index"][0], output.color[0]):
save_image(color, path / scene / f"color/{index:0>6}.png")
if self.test_cfg.save_video:
frame_str = "_".join([str(x.item()) for x in batch["context"]["index"][0]])
save_video(
[a for a in output.color[0]],
path / "video" / f"{scene}_frame_{frame_str}.mp4",
)
if self.test_cfg.save_compare:
# Construct comparison image.
context_img = inverse_normalize(batch["context"]["image"][0])
comparison = hcat(
add_label(vcat(*context_img), "Context"),
add_label(vcat(*rgb_gt), "Target (Ground Truth)"),
add_label(vcat(*rgb_pred), "Target (Prediction)"),
)
save_image(comparison, path / f"{scene}.png")
def test_step_align(self, batch, gaussians):
self.model.encoder.eval()
# freeze all parameters
for param in self.model.encoder.parameters():
param.requires_grad = False
b, v, _, h, w = batch["target"]["image"].shape
output_c2ws = batch["target"]["extrinsics"]
with torch.set_grad_enabled(True):
cam_rot_delta = nn.Parameter(torch.zeros([b, v, 6], requires_grad=True, device=output_c2ws.device))
cam_trans_delta = nn.Parameter(torch.zeros([b, v, 3], requires_grad=True, device=output_c2ws.device))
opt_params = []
self.register_buffer("identity", torch.tensor([1.0, 0.0, 0.0, 0.0, 1.0, 0.0]).to(output_c2ws))
opt_params.append(
{
"params": [cam_rot_delta],
"lr": 0.005,
}
)
opt_params.append(
{
"params": [cam_trans_delta],
"lr": 0.005,
}
)
pose_optimizer = torch.optim.Adam(opt_params)
extrinsics = output_c2ws.clone()
with self.benchmarker.time("optimize"):
for i in range(self.test_cfg.pose_align_steps):
pose_optimizer.zero_grad()
dx, drot = cam_trans_delta, cam_rot_delta
rot = rotation_6d_to_matrix(
drot + self.identity.expand(b, v, -1)
) # (..., 3, 3)
transform = torch.eye(4, device=extrinsics.device).repeat((b, v, 1, 1))
transform[..., :3, :3] = rot
transform[..., :3, 3] = dx
new_extrinsics = torch.matmul(extrinsics, transform)
output = self.model.decoder.forward(
gaussians,
new_extrinsics,
batch["target"]["intrinsics"],
batch["target"]["near"],
batch["target"]["far"],
(h, w),
# cam_rot_delta=cam_rot_delta,
# cam_trans_delta=cam_trans_delta,
)
# Compute and log loss.
total_loss = 0
for loss_fn in self.losses:
loss = loss_fn.forward(output, batch, gaussians, self.global_step)
total_loss = total_loss + loss
total_loss.backward()
pose_optimizer.step()
# Render Gaussians.
output = self.model.decoder.forward(
gaussians,
new_extrinsics,
batch["target"]["intrinsics"],
batch["target"]["near"],
batch["target"]["far"],
(h, w),
)
return output
def on_test_end(self) -> None:
name = get_cfg()["wandb"]["name"]
self.benchmarker.dump(self.test_cfg.output_path / name / "benchmark.json")
self.benchmarker.dump_memory(
self.test_cfg.output_path / name / "peak_memory.json"
)
self.benchmarker.summarize()
@rank_zero_only
def validation_step(self, batch, batch_idx, dataloader_idx=0):
batch: BatchedExample = self.data_shim(batch)
if self.global_rank == 0:
print(
f"validation step {self.global_step}; "
f"scene = {batch['scene']}; "
f"context = {batch['context']['index'].tolist()}"
)
# Render Gaussians.
b, v, _, h, w = batch["context"]["image"].shape
assert b == 1
visualization_dump = {}
encoder_output, output = self.model(batch["context"]["image"], self.global_step, visualization_dump=visualization_dump)
gaussians, pred_pose_enc_list, depth_dict = encoder_output.gaussians, encoder_output.pred_pose_enc_list, encoder_output.depth_dict
pred_context_pose, distill_infos = encoder_output.pred_context_pose, encoder_output.distill_infos
infos = encoder_output.infos
GS_num = infos['voxelize_ratio'] * (h*w*v)
self.log("val/GS_num", GS_num)
num_context_views = pred_context_pose['extrinsic'].shape[1]
num_target_views = batch["target"]["extrinsics"].shape[1]
rgb_pred = output.color[0].float()
depth_pred = vis_depth_map(output.depth[0])
# direct depth from gaussian means (used for visualization only)
gaussian_means = visualization_dump["depth"][0].squeeze()
if gaussian_means.shape[-1] == 3:
gaussian_means = gaussian_means.mean(dim=-1)
# Compute validation metrics.
rgb_gt = (batch["context"]["image"][0].float() + 1) / 2
psnr = compute_psnr(rgb_gt, rgb_pred).mean()
self.log(f"val/psnr", psnr)
lpips = compute_lpips(rgb_gt, rgb_pred).mean()
self.log(f"val/lpips", lpips)
ssim = compute_ssim(rgb_gt, rgb_pred).mean()
self.log(f"val/ssim", ssim)
# depth metrics
consis_absrel = abs_relative_difference(
rearrange(output.depth, "b v h w -> (b v) h w"),
rearrange(depth_dict['depth'].squeeze(-1), "b v h w -> (b v) h w"),
)
self.log("val/consis_absrel", consis_absrel.mean())
consis_delta1 = delta1_acc(
rearrange(output.depth, "b v h w -> (b v) h w"),
rearrange(depth_dict['depth'].squeeze(-1), "b v h w -> (b v) h w"),
valid_mask=rearrange(torch.ones_like(output.depth, device=output.depth.device, dtype=torch.bool), "b v h w -> (b v) h w"),
)
self.log("val/consis_delta1", consis_delta1.mean())
diff_map = torch.abs(output.depth - depth_dict['depth'].squeeze(-1))
self.log("val/consis_mse", diff_map[distill_infos['conf_mask']].mean())
# Construct comparison image.
context_img = inverse_normalize(batch["context"]["image"][0])
# context_img_depth = vis_depth_map(gaussian_means)
context = []
for i in range(context_img.shape[0]):
context.append(context_img[i])
# context.append(context_img_depth[i])
colored_diff_map = vis_depth_map(diff_map[0], near=torch.tensor(1e-4, device=diff_map.device), far=torch.tensor(1.0, device=diff_map.device))
model_depth_pred = depth_dict["depth"].squeeze(-1)[0]
model_depth_pred = vis_depth_map(model_depth_pred)
render_normal = (get_normal_map(output.depth.flatten(0, 1), batch["context"]["intrinsics"].flatten(0, 1)).permute(0, 3, 1, 2) + 1) / 2.
pred_normal = (get_normal_map(depth_dict['depth'].flatten(0, 1).squeeze(-1), batch["context"]["intrinsics"].flatten(0, 1)).permute(0, 3, 1, 2) + 1) / 2.
comparison = hcat(
add_label(vcat(*context), "Context"),
add_label(vcat(*rgb_gt), "Target (Ground Truth)"),
add_label(vcat(*rgb_pred), "Target (Prediction)"),
add_label(vcat(*depth_pred), "Depth (Prediction)"),
add_label(vcat(*model_depth_pred), "Depth (VGGT Prediction)"),
add_label(vcat(*render_normal), "Normal (Prediction)"),
add_label(vcat(*pred_normal), "Normal (VGGT Prediction)"),
add_label(vcat(*colored_diff_map), "Diff Map"),
)
comparison = torch.nn.functional.interpolate(
comparison.unsqueeze(0),
scale_factor=0.5,
mode='bicubic',
align_corners=False
).squeeze(0)
self.logger.log_image(
"comparison",
[prep_image(add_border(comparison))],
step=self.global_step,
caption=batch["scene"],
)
# self.logger.log_image(
# key="comparison",
# images=[wandb.Image(prep_image(add_border(comparison)), caption=batch["scene"], file_type="jpg")],
# step=self.global_step
# )
# Render projections and construct projection image.
# These are disabled for now, since RE10k scenes are effectively unbounded.
# if isinstance(gaussians, Gaussians):
# projections = hcat(
# *render_projections(
# gaussians,
# 256,
# extra_label="",
# )[0]
# )
# self.logger.log_image(
# "projection",
# [prep_image(add_border(projections))],
# step=self.global_step,
# )
# Draw cameras.
# cameras = hcat(*render_cameras(batch, 256))
# self.logger.log_image(
# "cameras", [prep_image(add_border(cameras))], step=self.global_step
# )
if self.encoder_visualizer is not None:
for k, image in self.encoder_visualizer.visualize(
batch["context"], self.global_step
).items():
self.logger.log_image(k, [prep_image(image)], step=self.global_step)
# Run video validation step.
self.render_video_interpolation(batch)
self.render_video_wobble(batch)
if self.train_cfg.extended_visualization:
self.render_video_interpolation_exaggerated(batch)
@rank_zero_only
def render_video_wobble(self, batch: BatchedExample) -> None:
# Two views are needed to get the wobble radius.
_, v, _, _ = batch["context"]["extrinsics"].shape
if v != 2:
return
def trajectory_fn(t):
origin_a = batch["context"]["extrinsics"][:, 0, :3, 3]
origin_b = batch["context"]["extrinsics"][:, 1, :3, 3]
delta = (origin_a - origin_b).norm(dim=-1)
extrinsics = generate_wobble(
batch["context"]["extrinsics"][:, 0],
delta * 0.25,
t,
)
intrinsics = repeat(
batch["context"]["intrinsics"][:, 0],
"b i j -> b v i j",
v=t.shape[0],
)
return extrinsics, intrinsics
return self.render_video_generic(batch, trajectory_fn, "wobble", num_frames=60)
@rank_zero_only
def render_video_interpolation(self, batch: BatchedExample) -> None:
_, v, _, _ = batch["context"]["extrinsics"].shape
def trajectory_fn(t):
extrinsics = interpolate_extrinsics(
batch["context"]["extrinsics"][0, 0],
(
batch["context"]["extrinsics"][0, 1]
if v == 2
else batch["target"]["extrinsics"][0, 0]
),
t,
)
intrinsics = interpolate_intrinsics(
batch["context"]["intrinsics"][0, 0],
(
batch["context"]["intrinsics"][0, 1]
if v == 2
else batch["target"]["intrinsics"][0, 0]
),
t,
)
return extrinsics[None], intrinsics[None]
return self.render_video_generic(batch, trajectory_fn, "rgb")
@rank_zero_only
def render_video_interpolation_exaggerated(self, batch: BatchedExample) -> None:
# Two views are needed to get the wobble radius.
_, v, _, _ = batch["context"]["extrinsics"].shape
if v != 2:
return
def trajectory_fn(t):
origin_a = batch["context"]["extrinsics"][:, 0, :3, 3]
origin_b = batch["context"]["extrinsics"][:, 1, :3, 3]
delta = (origin_a - origin_b).norm(dim=-1)
tf = generate_wobble_transformation(
delta * 0.5,
t,
5,
scale_radius_with_t=False,
)
extrinsics = interpolate_extrinsics(
batch["context"]["extrinsics"][0, 0],
(
batch["context"]["extrinsics"][0, 1]
if v == 2
else batch["target"]["extrinsics"][0, 0]
),
t * 5 - 2,
)
intrinsics = interpolate_intrinsics(
batch["context"]["intrinsics"][0, 0],
(
batch["context"]["intrinsics"][0, 1]
if v == 2
else batch["target"]["intrinsics"][0, 0]
),
t * 5 - 2,
)
return extrinsics @ tf, intrinsics[None]
return self.render_video_generic(
batch,
trajectory_fn,
"interpolation_exagerrated",
num_frames=300,
smooth=False,
loop_reverse=False,
)
@rank_zero_only
def render_video_generic(
self,
batch: BatchedExample,
trajectory_fn: TrajectoryFn,
name: str,
num_frames: int = 30,
smooth: bool = True,
loop_reverse: bool = True,
) -> None:
# Render probabilistic estimate of scene.
encoder_output = self.model.encoder((batch["context"]["image"]+1)/2, self.global_step)
gaussians, pred_pose_enc_list = encoder_output.gaussians, encoder_output.pred_pose_enc_list
t = torch.linspace(0, 1, num_frames, dtype=torch.float32, device=self.device)
if smooth:
t = (torch.cos(torch.pi * (t + 1)) + 1) / 2
extrinsics, intrinsics = trajectory_fn(t)
_, _, _, h, w = batch["context"]["image"].shape
# TODO: Interpolate near and far planes?
near = repeat(batch["context"]["near"][:, 0], "b -> b v", v=num_frames)
far = repeat(batch["context"]["far"][:, 0], "b -> b v", v=num_frames)
output = self.model.decoder.forward(
gaussians, extrinsics, intrinsics, near, far, (h, w), "depth"
)
images = [
vcat(rgb, depth)
for rgb, depth in zip(output.color[0], vis_depth_map(output.depth[0]))
]
video = torch.stack(images)
video = (video.clip(min=0, max=1) * 255).type(torch.uint8).cpu().numpy()
if loop_reverse:
video = pack([video, video[::-1][1:-1]], "* c h w")[0]
visualizations = {
f"video/{name}": wandb.Video(video[None], fps=30, format="mp4")
}
# Since the PyTorch Lightning doesn't support video logging, log to wandb directly.
try:
wandb.log(visualizations)
except Exception:
assert isinstance(self.logger, LocalLogger)
for key, value in visualizations.items():
tensor = value._prepare_video(value.data)
clip = mpy.ImageSequenceClip(list(tensor), fps=30)
dir = LOG_PATH / key
dir.mkdir(exist_ok=True, parents=True)
clip.write_videofile(
str(dir / f"{self.global_step:0>6}.mp4"), logger=None
)
def print_preview_metrics(self, metrics: dict[str, float | Tensor], methods: list[str] | None = None, overlap_tag: str | None = None) -> None:
if getattr(self, "running_metrics", None) is None:
self.running_metrics = metrics
self.running_metric_steps = 1
else:
s = self.running_metric_steps
self.running_metrics = {
k: ((s * v) + metrics[k]) / (s + 1)
for k, v in self.running_metrics.items()
}
self.running_metric_steps += 1
if overlap_tag is not None:
if getattr(self, "running_metrics_sub", None) is None:
self.running_metrics_sub = {overlap_tag: metrics}
self.running_metric_steps_sub = {overlap_tag: 1}
elif overlap_tag not in self.running_metrics_sub:
self.running_metrics_sub[overlap_tag] = metrics
self.running_metric_steps_sub[overlap_tag] = 1
else:
s = self.running_metric_steps_sub[overlap_tag]
self.running_metrics_sub[overlap_tag] = {k: ((s * v) + metrics[k]) / (s + 1)
for k, v in self.running_metrics_sub[overlap_tag].items()}
self.running_metric_steps_sub[overlap_tag] += 1
metric_list = ["psnr", "lpips", "ssim"]
def print_metrics(runing_metric, methods=None):
table = []
if methods is None:
methods = ['ours']
for method in methods:
row = [
f"{runing_metric[f'{metric}_{method}']:.3f}"
for metric in metric_list
]
table.append((method, *row))
headers = ["Method"] + metric_list
table = tabulate(table, headers)
print(table)
print("All Pairs:")
print_metrics(self.running_metrics, methods)
if overlap_tag is not None:
for k, v in self.running_metrics_sub.items():
print(f"Overlap: {k}")
print_metrics(v, methods)
def configure_optimizers(self):
new_params, new_param_names = [], []
pretrained_params, pretrained_param_names = [], []
for name, param in self.named_parameters():
if not param.requires_grad:
continue
if "gaussian_param_head" in name or "interm" in name:
new_params.append(param)
new_param_names.append(name)
else:
pretrained_params.append(param)
pretrained_param_names.append(name)
param_dicts = [
{
"params": new_params,
"lr": self.optimizer_cfg.lr,
},
{
"params": pretrained_params,
"lr": self.optimizer_cfg.lr * self.optimizer_cfg.backbone_lr_multiplier,
},
]
optimizer = torch.optim.AdamW(param_dicts, lr=self.optimizer_cfg.lr, weight_decay=0.05, betas=(0.9, 0.95))
warm_up_steps = self.optimizer_cfg.warm_up_steps
warm_up = torch.optim.lr_scheduler.LinearLR(
optimizer,
1 / warm_up_steps,
1,
total_iters=warm_up_steps,
)
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=get_cfg()["trainer"]["max_steps"], eta_min=self.optimizer_cfg.lr * 0.1)
lr_scheduler = torch.optim.lr_scheduler.SequentialLR(optimizer, schedulers=[warm_up, lr_scheduler], milestones=[warm_up_steps])
return {
"optimizer": optimizer,
"lr_scheduler": {
"scheduler": lr_scheduler,
"interval": "step",
"frequency": 1,
},
}
|