File size: 19,743 Bytes
2568013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 |
import json
import os
from typing import Any, Dict, List, Optional
import cv2
import imageio.v2 as imageio
import numpy as np
import torch
from PIL import Image
from pycolmap import SceneManager
from tqdm import tqdm
from typing_extensions import assert_never
import sys
sys.path.append("/cpfs01/user/jianglihan/projects/gsplat/examples/datasets")
sys.path.append("/cpfs01/user/jianglihan/projects/gsplat/examples")
sys.path.append("/cpfs01/user/jianglihan/projects/gsplat")
from normalize import (
align_principal_axes,
similarity_from_cameras,
transform_cameras,
transform_points,
)
def _get_rel_paths(path_dir: str) -> List[str]:
"""Recursively get relative paths of files in a directory."""
paths = []
for dp, dn, fn in os.walk(path_dir):
for f in fn:
paths.append(os.path.relpath(os.path.join(dp, f), path_dir))
return paths
def _resize_image_folder(image_dir: str, resized_dir: str, factor: int) -> str:
"""Resize image folder."""
print(f"Downscaling images by {factor}x from {image_dir} to {resized_dir}.")
os.makedirs(resized_dir, exist_ok=True)
image_files = _get_rel_paths(image_dir)
for image_file in tqdm(image_files):
image_path = os.path.join(image_dir, image_file)
resized_path = os.path.join(
resized_dir, os.path.splitext(image_file)[0] + ".png"
)
if os.path.isfile(resized_path):
continue
image = imageio.imread(image_path)[..., :3]
resized_size = (
int(round(image.shape[1] / factor)),
int(round(image.shape[0] / factor)),
)
resized_image = np.array(
Image.fromarray(image).resize(resized_size, Image.BICUBIC)
)
imageio.imwrite(resized_path, resized_image)
return resized_dir
class Parser:
"""COLMAP parser."""
def __init__(
self,
data_dir: str,
factor: int = 1,
normalize: bool = False,
test_every: int = 8,
):
self.data_dir = data_dir
self.factor = factor
self.normalize = normalize
self.test_every = test_every
colmap_dir = os.path.join(data_dir, "sparse/0/")
if not os.path.exists(colmap_dir):
colmap_dir = os.path.join(data_dir, "sparse")
assert os.path.exists(
colmap_dir
), f"COLMAP directory {colmap_dir} does not exist."
manager = SceneManager(colmap_dir)
manager.load_cameras()
manager.load_images()
manager.load_points3D()
# Extract extrinsic matrices in world-to-camera format.
imdata = manager.images
w2c_mats = []
camera_ids = []
Ks_dict = dict()
params_dict = dict()
imsize_dict = dict() # width, height
mask_dict = dict()
bottom = np.array([0, 0, 0, 1]).reshape(1, 4)
for k in imdata:
im = imdata[k]
rot = im.R()
trans = im.tvec.reshape(3, 1)
w2c = np.concatenate([np.concatenate([rot, trans], 1), bottom], axis=0)
w2c_mats.append(w2c)
# support different camera intrinsics
camera_id = im.camera_id
camera_ids.append(camera_id)
# camera intrinsics
cam = manager.cameras[camera_id]
fx, fy, cx, cy = cam.fx, cam.fy, cam.cx, cam.cy
K = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])
K[:2, :] /= factor
Ks_dict[camera_id] = K
# Get distortion parameters.
type_ = cam.camera_type
if type_ == 0 or type_ == "SIMPLE_PINHOLE":
params = np.empty(0, dtype=np.float32)
camtype = "perspective"
elif type_ == 1 or type_ == "PINHOLE":
params = np.empty(0, dtype=np.float32)
camtype = "perspective"
if type_ == 2 or type_ == "SIMPLE_RADIAL":
params = np.array([cam.k1, 0.0, 0.0, 0.0], dtype=np.float32)
camtype = "perspective"
elif type_ == 3 or type_ == "RADIAL":
params = np.array([cam.k1, cam.k2, 0.0, 0.0], dtype=np.float32)
camtype = "perspective"
elif type_ == 4 or type_ == "OPENCV":
params = np.array([cam.k1, cam.k2, cam.p1, cam.p2], dtype=np.float32)
camtype = "perspective"
elif type_ == 5 or type_ == "OPENCV_FISHEYE":
params = np.array([cam.k1, cam.k2, cam.k3, cam.k4], dtype=np.float32)
camtype = "fisheye"
assert (
camtype == "perspective" or camtype == "fisheye"
), f"Only perspective and fisheye cameras are supported, got {type_}"
params_dict[camera_id] = params
imsize_dict[camera_id] = (cam.width // factor, cam.height // factor)
mask_dict[camera_id] = None
print(
f"[Parser] {len(imdata)} images, taken by {len(set(camera_ids))} cameras."
)
if len(imdata) == 0:
raise ValueError("No images found in COLMAP.")
if not (type_ == 0 or type_ == 1):
print("Warning: COLMAP Camera is not PINHOLE. Images have distortion.")
w2c_mats = np.stack(w2c_mats, axis=0)
# Convert extrinsics to camera-to-world.
camtoworlds = np.linalg.inv(w2c_mats)
# Image names from COLMAP. No need for permuting the poses according to
# image names anymore.
image_names = [imdata[k].name for k in imdata]
# Previous Nerf results were generated with images sorted by filename,
# ensure metrics are reported on the same test set.
inds = np.argsort(image_names)
image_names = [image_names[i] for i in inds]
camtoworlds = camtoworlds[inds]
camera_ids = [camera_ids[i] for i in inds]
# Load extended metadata. Used by Bilarf dataset.
self.extconf = {
"spiral_radius_scale": 1.0,
"no_factor_suffix": False,
}
extconf_file = os.path.join(data_dir, "ext_metadata.json")
if os.path.exists(extconf_file):
with open(extconf_file) as f:
self.extconf.update(json.load(f))
# Load bounds if possible (only used in forward facing scenes).
self.bounds = np.array([0.01, 1.0])
posefile = os.path.join(data_dir, "poses_bounds.npy")
if os.path.exists(posefile):
self.bounds = np.load(posefile)[:, -2:]
# Load images.
if factor > 1 and not self.extconf["no_factor_suffix"]:
image_dir_suffix = f"_{factor}"
else:
image_dir_suffix = ""
colmap_image_dir = os.path.join(data_dir, "images")
image_dir = os.path.join(data_dir, "images" + image_dir_suffix)
for d in [image_dir, colmap_image_dir]:
if not os.path.exists(d):
raise ValueError(f"Image folder {d} does not exist.")
# Downsampled images may have different names vs images used for COLMAP,
# so we need to map between the two sorted lists of files.
colmap_files = sorted(_get_rel_paths(colmap_image_dir))
image_files = sorted(_get_rel_paths(image_dir))
if factor > 1 and os.path.splitext(image_files[0])[1].lower() == ".jpg":
image_dir = _resize_image_folder(
colmap_image_dir, image_dir + "_png", factor=factor
)
image_files = sorted(_get_rel_paths(image_dir))
colmap_to_image = dict(zip(colmap_files, image_files))
image_paths = [os.path.join(image_dir, colmap_to_image[f]) for f in image_names]
# 3D points and {image_name -> [point_idx]}
points = manager.points3D.astype(np.float32)
points_err = manager.point3D_errors.astype(np.float32)
points_rgb = manager.point3D_colors.astype(np.uint8)
point_indices = dict()
image_id_to_name = {v: k for k, v in manager.name_to_image_id.items()}
for point_id, data in manager.point3D_id_to_images.items():
for image_id, _ in data:
image_name = image_id_to_name[image_id]
point_idx = manager.point3D_id_to_point3D_idx[point_id]
point_indices.setdefault(image_name, []).append(point_idx)
point_indices = {
k: np.array(v).astype(np.int32) for k, v in point_indices.items()
}
# Normalize the world space.
if normalize:
T1 = similarity_from_cameras(camtoworlds)
camtoworlds = transform_cameras(T1, camtoworlds)
points = transform_points(T1, points)
T2 = align_principal_axes(points)
camtoworlds = transform_cameras(T2, camtoworlds)
points = transform_points(T2, points)
transform = T2 @ T1
# Fix for up side down. We assume more points towards
# the bottom of the scene which is true when ground floor is
# present in the images.
if np.median(points[:, 2]) > np.mean(points[:, 2]):
# rotate 180 degrees around x axis such that z is flipped
T3 = np.array(
[
[1.0, 0.0, 0.0, 0.0],
[0.0, -1.0, 0.0, 0.0],
[0.0, 0.0, -1.0, 0.0],
[0.0, 0.0, 0.0, 1.0],
]
)
camtoworlds = transform_cameras(T3, camtoworlds)
points = transform_points(T3, points)
transform = T3 @ transform
else:
transform = np.eye(4)
self.image_names = image_names # List[str], (num_images,)
self.image_paths = image_paths # List[str], (num_images,)
self.camtoworlds = camtoworlds # np.ndarray, (num_images, 4, 4)
self.camera_ids = camera_ids # List[int], (num_images,)
self.Ks_dict = Ks_dict # Dict of camera_id -> K
self.params_dict = params_dict # Dict of camera_id -> params
self.imsize_dict = imsize_dict # Dict of camera_id -> (width, height)
self.mask_dict = mask_dict # Dict of camera_id -> mask
self.points = points # np.ndarray, (num_points, 3)
self.points_err = points_err # np.ndarray, (num_points,)
self.points_rgb = points_rgb # np.ndarray, (num_points, 3)
self.point_indices = point_indices # Dict[str, np.ndarray], image_name -> [M,]
self.transform = transform # np.ndarray, (4, 4)
# load one image to check the size. In the case of tanksandtemples dataset, the
# intrinsics stored in COLMAP corresponds to 2x upsampled images.
actual_image = imageio.imread(self.image_paths[0])[..., :3]
actual_height, actual_width = actual_image.shape[:2]
colmap_width, colmap_height = self.imsize_dict[self.camera_ids[0]]
s_height, s_width = actual_height / colmap_height, actual_width / colmap_width
for camera_id, K in self.Ks_dict.items():
K[0, :] *= s_width
K[1, :] *= s_height
self.Ks_dict[camera_id] = K
width, height = self.imsize_dict[camera_id]
self.imsize_dict[camera_id] = (int(width * s_width), int(height * s_height))
# undistortion
self.mapx_dict = dict()
self.mapy_dict = dict()
self.roi_undist_dict = dict()
for camera_id in self.params_dict.keys():
params = self.params_dict[camera_id]
if len(params) == 0:
continue # no distortion
assert camera_id in self.Ks_dict, f"Missing K for camera {camera_id}"
assert (
camera_id in self.params_dict
), f"Missing params for camera {camera_id}"
K = self.Ks_dict[camera_id]
width, height = self.imsize_dict[camera_id]
if camtype == "perspective":
K_undist, roi_undist = cv2.getOptimalNewCameraMatrix(
K, params, (width, height), 0
)
mapx, mapy = cv2.initUndistortRectifyMap(
K, params, None, K_undist, (width, height), cv2.CV_32FC1
)
mask = None
elif camtype == "fisheye":
fx = K[0, 0]
fy = K[1, 1]
cx = K[0, 2]
cy = K[1, 2]
grid_x, grid_y = np.meshgrid(
np.arange(width, dtype=np.float32),
np.arange(height, dtype=np.float32),
indexing="xy",
)
x1 = (grid_x - cx) / fx
y1 = (grid_y - cy) / fy
theta = np.sqrt(x1**2 + y1**2)
r = (
1.0
+ params[0] * theta**2
+ params[1] * theta**4
+ params[2] * theta**6
+ params[3] * theta**8
)
mapx = (fx * x1 * r + width // 2).astype(np.float32)
mapy = (fy * y1 * r + height // 2).astype(np.float32)
# Use mask to define ROI
mask = np.logical_and(
np.logical_and(mapx > 0, mapy > 0),
np.logical_and(mapx < width - 1, mapy < height - 1),
)
y_indices, x_indices = np.nonzero(mask)
y_min, y_max = y_indices.min(), y_indices.max() + 1
x_min, x_max = x_indices.min(), x_indices.max() + 1
mask = mask[y_min:y_max, x_min:x_max]
K_undist = K.copy()
K_undist[0, 2] -= x_min
K_undist[1, 2] -= y_min
roi_undist = [x_min, y_min, x_max - x_min, y_max - y_min]
else:
assert_never(camtype)
self.mapx_dict[camera_id] = mapx
self.mapy_dict[camera_id] = mapy
self.Ks_dict[camera_id] = K_undist
self.roi_undist_dict[camera_id] = roi_undist
self.imsize_dict[camera_id] = (roi_undist[2], roi_undist[3])
self.mask_dict[camera_id] = mask
# size of the scene measured by cameras
camera_locations = camtoworlds[:, :3, 3]
scene_center = np.mean(camera_locations, axis=0)
dists = np.linalg.norm(camera_locations - scene_center, axis=1)
self.scene_scale = np.max(dists)
class Dataset:
"""A simple dataset class."""
def __init__(
self,
# parser: Parser,
images: np.ndarray,
camtoworlds: np.ndarray,
Ks: np.ndarray,
split: str = "train",
patch_size: Optional[int] = None,
load_depths: bool = False,
):
# self.parser = parser
self.split = split
self.patch_size = patch_size
self.load_depths = load_depths
self.images = images
self.camtoworlds = camtoworlds
self.Ks = Ks
H, W = self.images.shape[-2:]
self.Ks[:, 0, :] *= W
self.Ks[:, 1, :] *= H
self.indices = np.arange(len(images))
# indices = np.arange(len(self.parser.image_names))
# if split == "train":
# self.indices = indices[indices % self.parser.test_every != 0]
# else:
# self.indices = indices[indices % self.parser.test_every == 0]
# if split == "train":
# self.images = np.load(os.path.join(self.parser.true_data_dir, "context_image.npy"))
# self.camtoworlds = np.load(os.path.join(self.parser.true_data_dir, "context_extrinsic.npy"))
# self.Ks = np.load(os.path.join(self.parser.true_data_dir, "context_intrinsic.npy"))
# H, W = self.images.shape[-2:]
# self.Ks[:, 0, :] *= W
# self.Ks[:, 1, :] *= H
# self.indices = np.arange(len(self.images))
# else:
# self.images = np.load(os.path.join(self.parser.true_data_dir, "target_image.npy"))
# self.camtoworlds = np.load(os.path.join(self.parser.true_data_dir, "target_extrinsic.npy"))
# self.Ks = np.load(os.path.join(self.parser.true_data_dir, "target_intrinsic.npy"))
# H, W = self.images.shape[-2:]
# self.Ks[:, 0, :] *= W
# self.Ks[:, 1, :] *= H
# self.indices = np.arange(len(self.images))
def __len__(self):
return len(self.indices)
def __getitem__(self, item: int) -> Dict[str, Any]:
index = self.indices[item]
image = (self.images[index]*255.0).transpose(1, 2, 0).astype(np.uint8) # (H, W, 3)
K = self.Ks[index].copy() # undistorted K
params = None
camtoworlds = self.camtoworlds[index]
mask = None
if self.patch_size is not None:
# Random crop.
h, w = image.shape[:2]
x = np.random.randint(0, max(w - self.patch_size, 1))
y = np.random.randint(0, max(h - self.patch_size, 1))
image = image[y : y + self.patch_size, x : x + self.patch_size]
K[0, 2] -= x
K[1, 2] -= y
data = {
"K": torch.from_numpy(K).float(),
"camtoworld": torch.from_numpy(camtoworlds).float(),
"image": torch.from_numpy(image).float(),
"image_id": item, # the index of the image in the dataset
}
if mask is not None:
data["mask"] = torch.from_numpy(mask).bool()
if self.load_depths and False:
# projected points to image plane to get depths
worldtocams = np.linalg.inv(camtoworlds)
image_name = self.parser.image_names[index]
point_indices = self.parser.point_indices[image_name]
points_world = self.parser.points[point_indices]
points_cam = (worldtocams[:3, :3] @ points_world.T + worldtocams[:3, 3:4]).T
points_proj = (K @ points_cam.T).T
points = points_proj[:, :2] / points_proj[:, 2:3] # (M, 2)
depths = points_cam[:, 2] # (M,)
# filter out points outside the image
selector = (
(points[:, 0] >= 0)
& (points[:, 0] < image.shape[1])
& (points[:, 1] >= 0)
& (points[:, 1] < image.shape[0])
& (depths > 0)
)
points = points[selector]
depths = depths[selector]
data["points"] = torch.from_numpy(points).float()
data["depths"] = torch.from_numpy(depths).float()
return data
if __name__ == "__main__":
import argparse
import imageio.v2 as imageio
parser = argparse.ArgumentParser()
parser.add_argument("--data_dir", type=str, default="data/mipnerf360/garden")
parser.add_argument("--true_data_dir", type=str, default="/cpfs01/user/jianglihan/projects/anysplat_baselines/demo_data/infer_output/3F_100view/room5")
parser.add_argument("--factor", type=int, default=4)
args = parser.parse_args()
# Parse COLMAP data.
parser = Parser(
data_dir=args.data_dir,
true_data_dir=args.true_data_dir,
factor=args.factor,
normalize=True,
test_every=8
)
dataset = Dataset(parser, split="train", load_depths=True)
print(f"Dataset: {len(dataset)} images.")
writer = imageio.get_writer("results/points.mp4", fps=30)
for data in tqdm(dataset, desc="Plotting points"):
image = data["image"].numpy().astype(np.uint8)
points = data["points"].numpy()
depths = data["depths"].numpy()
for x, y in points:
cv2.circle(image, (int(x), int(y)), 2, (255, 0, 0), -1)
writer.append_data(image)
writer.close()
|