File size: 9,447 Bytes
2568013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
"""
Code borrowed from

https://github.com/google-research/multinerf/blob/5b4d4f64608ec8077222c52fdf814d40acc10bc1/internal/camera_utils.py
"""

import numpy as np
import scipy


def normalize(x: np.ndarray) -> np.ndarray:
    """Normalization helper function."""
    return x / np.linalg.norm(x)


def viewmatrix(lookdir: np.ndarray, up: np.ndarray, position: np.ndarray) -> np.ndarray:
    """Construct lookat view matrix."""
    vec2 = normalize(lookdir)
    vec0 = normalize(np.cross(up, vec2))
    vec1 = normalize(np.cross(vec2, vec0))
    m = np.stack([vec0, vec1, vec2, position], axis=1)
    return m


def focus_point_fn(poses: np.ndarray) -> np.ndarray:
    """Calculate nearest point to all focal axes in poses."""
    directions, origins = poses[:, :3, 2:3], poses[:, :3, 3:4]
    m = np.eye(3) - directions * np.transpose(directions, [0, 2, 1])
    mt_m = np.transpose(m, [0, 2, 1]) @ m
    focus_pt = np.linalg.inv(mt_m.mean(0)) @ (mt_m @ origins).mean(0)[:, 0]
    return focus_pt


def average_pose(poses: np.ndarray) -> np.ndarray:
    """New pose using average position, z-axis, and up vector of input poses."""
    position = poses[:, :3, 3].mean(0)
    z_axis = poses[:, :3, 2].mean(0)
    up = poses[:, :3, 1].mean(0)
    cam2world = viewmatrix(z_axis, up, position)
    return cam2world


def generate_spiral_path(
    poses,
    bounds,
    n_frames=120,
    n_rots=2,
    zrate=0.5,
    spiral_scale_f=1.0,
    spiral_scale_r=1.0,
    focus_distance=0.75,
):
    """Calculates a forward facing spiral path for rendering."""
    # Find a reasonable 'focus depth' for this dataset as a weighted average
    # of conservative near and far bounds in disparity space.
    near_bound = bounds.min()
    far_bound = bounds.max()
    # All cameras will point towards the world space point (0, 0, -focal).
    focal = 1 / (((1 - focus_distance) / near_bound + focus_distance / far_bound))
    focal = focal * spiral_scale_f

    # Get radii for spiral path using 90th percentile of camera positions.
    positions = poses[:, :3, 3]
    radii = np.percentile(np.abs(positions), 90, 0)
    radii = radii * spiral_scale_r
    radii = np.concatenate([radii, [1.0]])

    # Generate poses for spiral path.
    render_poses = []
    cam2world = average_pose(poses)
    up = poses[:, :3, 1].mean(0)
    for theta in np.linspace(0.0, 2.0 * np.pi * n_rots, n_frames, endpoint=False):
        t = radii * [np.cos(theta), -np.sin(theta), -np.sin(theta * zrate), 1.0]
        position = cam2world @ t
        lookat = cam2world @ [0, 0, -focal, 1.0]
        z_axis = position - lookat
        render_poses.append(viewmatrix(z_axis, up, position))
    render_poses = np.stack(render_poses, axis=0)
    return render_poses


def generate_ellipse_path_z(
    poses: np.ndarray,
    n_frames: int = 120,
    # const_speed: bool = True,
    variation: float = 0.0,
    phase: float = 0.0,
    height: float = 0.0,
) -> np.ndarray:
    """Generate an elliptical render path based on the given poses."""
    # Calculate the focal point for the path (cameras point toward this).
    center = focus_point_fn(poses)
    # Path height sits at z=height (in middle of zero-mean capture pattern).
    offset = np.array([center[0], center[1], height])

    # Calculate scaling for ellipse axes based on input camera positions.
    sc = np.percentile(np.abs(poses[:, :3, 3] - offset), 90, axis=0)
    # Use ellipse that is symmetric about the focal point in xy.
    low = -sc + offset
    high = sc + offset
    # Optional height variation need not be symmetric
    z_low = np.percentile((poses[:, :3, 3]), 10, axis=0)
    z_high = np.percentile((poses[:, :3, 3]), 90, axis=0)

    def get_positions(theta):
        # Interpolate between bounds with trig functions to get ellipse in x-y.
        # Optionally also interpolate in z to change camera height along path.
        return np.stack(
            [
                low[0] + (high - low)[0] * (np.cos(theta) * 0.5 + 0.5),
                low[1] + (high - low)[1] * (np.sin(theta) * 0.5 + 0.5),
                variation
                * (
                    z_low[2]
                    + (z_high - z_low)[2]
                    * (np.cos(theta + 2 * np.pi * phase) * 0.5 + 0.5)
                )
                + height,
            ],
            -1,
        )

    theta = np.linspace(0, 2.0 * np.pi, n_frames + 1, endpoint=True)
    positions = get_positions(theta)

    # if const_speed:
    #     # Resample theta angles so that the velocity is closer to constant.
    #     lengths = np.linalg.norm(positions[1:] - positions[:-1], axis=-1)
    #     theta = stepfun.sample(None, theta, np.log(lengths), n_frames + 1)
    #     positions = get_positions(theta)

    # Throw away duplicated last position.
    positions = positions[:-1]

    # Set path's up vector to axis closest to average of input pose up vectors.
    avg_up = poses[:, :3, 1].mean(0)
    avg_up = avg_up / np.linalg.norm(avg_up)
    ind_up = np.argmax(np.abs(avg_up))
    up = np.eye(3)[ind_up] * np.sign(avg_up[ind_up])

    return np.stack([viewmatrix(center - p, up, p) for p in positions])


def generate_ellipse_path_y(
    poses: np.ndarray,
    n_frames: int = 120,
    # const_speed: bool = True,
    variation: float = 0.0,
    phase: float = 0.0,
    height: float = 0.0,
) -> np.ndarray:
    """Generate an elliptical render path based on the given poses."""
    # Calculate the focal point for the path (cameras point toward this).
    center = focus_point_fn(poses)
    # Path height sits at y=height (in middle of zero-mean capture pattern).
    offset = np.array([center[0], height, center[2]])

    # Calculate scaling for ellipse axes based on input camera positions.
    sc = np.percentile(np.abs(poses[:, :3, 3] - offset), 90, axis=0)
    # Use ellipse that is symmetric about the focal point in xy.
    low = -sc + offset
    high = sc + offset
    # Optional height variation need not be symmetric
    y_low = np.percentile((poses[:, :3, 3]), 10, axis=0)
    y_high = np.percentile((poses[:, :3, 3]), 90, axis=0)

    def get_positions(theta):
        # Interpolate between bounds with trig functions to get ellipse in x-z.
        # Optionally also interpolate in y to change camera height along path.
        return np.stack(
            [
                low[0] + (high - low)[0] * (np.cos(theta) * 0.5 + 0.5),
                variation
                * (
                    y_low[1]
                    + (y_high - y_low)[1]
                    * (np.cos(theta + 2 * np.pi * phase) * 0.5 + 0.5)
                )
                + height,
                low[2] + (high - low)[2] * (np.sin(theta) * 0.5 + 0.5),
            ],
            -1,
        )

    theta = np.linspace(0, 2.0 * np.pi, n_frames + 1, endpoint=True)
    positions = get_positions(theta)

    # if const_speed:
    #     # Resample theta angles so that the velocity is closer to constant.
    #     lengths = np.linalg.norm(positions[1:] - positions[:-1], axis=-1)
    #     theta = stepfun.sample(None, theta, np.log(lengths), n_frames + 1)
    #     positions = get_positions(theta)

    # Throw away duplicated last position.
    positions = positions[:-1]

    # Set path's up vector to axis closest to average of input pose up vectors.
    avg_up = poses[:, :3, 1].mean(0)
    avg_up = avg_up / np.linalg.norm(avg_up)
    ind_up = np.argmax(np.abs(avg_up))
    up = np.eye(3)[ind_up] * np.sign(avg_up[ind_up])

    return np.stack([viewmatrix(p - center, up, p) for p in positions])


def generate_interpolated_path(
    poses: np.ndarray,
    n_interp: int,
    spline_degree: int = 5,
    smoothness: float = 0.03,
    rot_weight: float = 0.1,
):
    """Creates a smooth spline path between input keyframe camera poses.

    Spline is calculated with poses in format (position, lookat-point, up-point).

    Args:
      poses: (n, 3, 4) array of input pose keyframes.
      n_interp: returned path will have n_interp * (n - 1) total poses.
      spline_degree: polynomial degree of B-spline.
      smoothness: parameter for spline smoothing, 0 forces exact interpolation.
      rot_weight: relative weighting of rotation/translation in spline solve.

    Returns:
      Array of new camera poses with shape (n_interp * (n - 1), 3, 4).
    """

    def poses_to_points(poses, dist):
        """Converts from pose matrices to (position, lookat, up) format."""
        pos = poses[:, :3, -1]
        lookat = poses[:, :3, -1] - dist * poses[:, :3, 2]
        up = poses[:, :3, -1] + dist * poses[:, :3, 1]
        return np.stack([pos, lookat, up], 1)

    def points_to_poses(points):
        """Converts from (position, lookat, up) format to pose matrices."""
        return np.array([viewmatrix(p - l, u - p, p) for p, l, u in points])

    def interp(points, n, k, s):
        """Runs multidimensional B-spline interpolation on the input points."""
        sh = points.shape
        pts = np.reshape(points, (sh[0], -1))
        k = min(k, sh[0] - 1)
        tck, _ = scipy.interpolate.splprep(pts.T, k=k, s=s)
        u = np.linspace(0, 1, n, endpoint=False)
        new_points = np.array(scipy.interpolate.splev(u, tck))
        new_points = np.reshape(new_points.T, (n, sh[1], sh[2]))
        return new_points

    points = poses_to_points(poses, dist=rot_weight)
    new_points = interp(
        points, n_interp * (points.shape[0] - 1), k=spline_degree, s=smoothness
    )
    return points_to_poses(new_points)