File size: 18,698 Bytes
2568013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
import math
import struct
from io import BytesIO
from typing import Literal, Optional

import numpy as np
import torch


def sh2rgb(sh: torch.Tensor) -> torch.Tensor:
    """Convert Sphere Harmonics to RGB

    Args:
        sh (torch.Tensor): SH tensor

    Returns:
        torch.Tensor: RGB tensor
    """
    C0 = 0.28209479177387814
    return sh * C0 + 0.5


def part1by2_vec(x: torch.Tensor) -> torch.Tensor:
    """Interleave bits of x with 0s

    Args:
        x (torch.Tensor): Input tensor. Shape (N,)

    Returns:
        torch.Tensor: Output tensor. Shape (N,)
    """

    x = x & 0x000003FF
    x = (x ^ (x << 16)) & 0xFF0000FF
    x = (x ^ (x << 8)) & 0x0300F00F
    x = (x ^ (x << 4)) & 0x030C30C3
    x = (x ^ (x << 2)) & 0x09249249
    return x


def encode_morton3_vec(
    x: torch.Tensor, y: torch.Tensor, z: torch.Tensor
) -> torch.Tensor:
    """Compute Morton codes for 3D coordinates

    Args:
        x (torch.Tensor): X coordinates. Shape (N,)
        y (torch.Tensor): Y coordinates. Shape (N,)
        z (torch.Tensor): Z coordinates. Shape (N,)
    Returns:
        torch.Tensor: Morton codes. Shape (N,)
    """
    return (part1by2_vec(z) << 2) + (part1by2_vec(y) << 1) + part1by2_vec(x)


def sort_centers(centers: torch.Tensor, indices: torch.Tensor) -> torch.Tensor:
    """Sort centers based on Morton codes

    Args:
        centers (torch.Tensor): Centers. Shape (N, 3)
        indices (torch.Tensor): Indices. Shape (N,)
    Returns:
        torch.Tensor: Sorted indices. Shape (N,)
    """
    # Compute min and max values in a single operation
    min_vals, _ = torch.min(centers, dim=0)
    max_vals, _ = torch.max(centers, dim=0)

    # Compute the scaling factors
    lengths = max_vals - min_vals
    lengths[lengths == 0] = 1  # Prevent division by zero

    # Normalize and scale to 10-bit integer range (0-1024)
    scaled_centers = ((centers - min_vals) / lengths * 1024).floor().to(torch.int32)

    # Extract x, y, z coordinates
    x, y, z = scaled_centers[:, 0], scaled_centers[:, 1], scaled_centers[:, 2]

    # Compute Morton codes using vectorized operations
    morton = encode_morton3_vec(x, y, z)

    # Sort indices based on Morton codes
    sorted_indices = indices[torch.argsort(morton).to(indices.device)]

    return sorted_indices


def pack_unorm(value: torch.Tensor, bits: int) -> torch.Tensor:
    """Pack a floating point value into an unsigned integer with a given number of bits.

    Args:
        value (torch.Tensor): Floating point value to pack. Shape (N,)
        bits (int): Number of bits to pack into.

    Returns:
        torch.Tensor: Packed value. Shape (N,)
    """

    t = (1 << bits) - 1
    packed = torch.clamp((value * t + 0.5).floor(), min=0, max=t)
    # Convert to integer type
    return packed.to(torch.int64)


def pack_111011(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor) -> torch.Tensor:
    """Pack three floating point values into a 32-bit integer with 11, 10, and 11 bits.

    Args:
        x (torch.Tensor): X component. Shape (N,)
        y (torch.Tensor): Y component. Shape (N,)
        z (torch.Tensor): Z component. Shape (N,)
    Returns:
        torch.Tensor: Packed values. Shape (N,)
    """
    # Pack each component using pack_unorm
    packed_x = pack_unorm(x, 11) << 21
    packed_y = pack_unorm(y, 10) << 11
    packed_z = pack_unorm(z, 11)

    # Combine the packed values using bitwise OR
    return packed_x | packed_y | packed_z


def pack_8888(
    x: torch.Tensor, y: torch.Tensor, z: torch.Tensor, w: torch.Tensor
) -> torch.Tensor:
    """Pack four floating point values into a 32-bit integer with 8 bits each.

    Args:
        x (torch.Tensor): X component. Shape (N,)
        y (torch.Tensor): Y component. Shape (N,)
        z (torch.Tensor): Z component. Shape (N,)
        w (torch.Tensor): W component. Shape (N,)
    Returns:
        torch.Tensor: Packed values. Shape (N,)
    """
    # Pack each component using pack_unorm
    packed_x = pack_unorm(x, 8) << 24
    packed_y = pack_unorm(y, 8) << 16
    packed_z = pack_unorm(z, 8) << 8
    packed_w = pack_unorm(w, 8)

    # Combine the packed values using bitwise OR
    return packed_x | packed_y | packed_z | packed_w


def pack_rotation(q: torch.Tensor) -> torch.Tensor:
    """Pack a quaternion into a 32-bit integer.

    Args:
        q (torch.Tensor): Quaternions. Shape (N, 4)

    Returns:
        torch.Tensor: Packed values. Shape (N,)
    """

    # Normalize each quaternion
    norms = torch.linalg.norm(q, dim=-1, keepdim=True)
    q = q / norms

    # Find the largest component index for each quaternion
    largest_components = torch.argmax(torch.abs(q), dim=-1)

    # Flip quaternions where the largest component is negative
    batch_indices = torch.arange(q.size(0), device=q.device)
    largest_values = q[batch_indices, largest_components]
    flip_mask = largest_values < 0
    q[flip_mask] *= -1

    # Precomputed indices for the components to pack (excluding largest)
    precomputed_indices = torch.tensor(
        [[1, 2, 3], [0, 2, 3], [0, 1, 3], [0, 1, 2]], dtype=torch.long, device=q.device
    )

    # Gather components to pack for each quaternion
    pack_indices = precomputed_indices[largest_components]
    components_to_pack = q[batch_indices[:, None], pack_indices]

    # Scale and pack each component into 10-bit integers
    norm = math.sqrt(2) * 0.5
    scaled = components_to_pack * norm + 0.5
    packed = pack_unorm(scaled, 10)  # Assuming pack_unorm is vectorized

    # Combine into the final 32-bit integer
    largest_packed = largest_components.to(torch.int64) << 30
    c0_packed = packed[:, 0] << 20
    c1_packed = packed[:, 1] << 10
    c2_packed = packed[:, 2]

    result = largest_packed | c0_packed | c1_packed | c2_packed
    return result


def splat2ply_bytes_compressed(
    means: torch.Tensor,
    scales: torch.Tensor,
    quats: torch.Tensor,
    opacities: torch.Tensor,
    sh0: torch.Tensor,
    shN: torch.Tensor,
    chunk_max_size: int = 256,
    opacity_threshold: float = 1 / 255,
) -> bytes:
    """Return the binary compressed Ply file. Used by Supersplat viewer.

    Args:
        means (torch.Tensor): Splat means. Shape (N, 3)
        scales (torch.Tensor): Splat scales. Shape (N, 3)
        quats (torch.Tensor): Splat quaternions. Shape (N, 4)
        opacities (torch.Tensor): Splat opacities. Shape (N,)
        sh0 (torch.Tensor): Spherical harmonics. Shape (N, 3)
        shN (torch.Tensor): Spherical harmonics. Shape (N, K*3)
        chunk_max_size (int): Maximum number of splats per chunk. Default: 256
        opacity_threshold (float): Opacity threshold. Default: 1 / 255

    Returns:
        bytes: Binary compressed Ply file representing the model.
    """

    # Filter the splats with too low opacity
    mask = torch.sigmoid(opacities) > opacity_threshold
    means = means[mask]
    scales = scales[mask]
    sh0_colors = sh2rgb(sh0)
    sh0_colors = sh0_colors[mask]
    shN = shN[mask]
    quats = quats[mask]
    opacities = opacities[mask]

    num_splats = means.shape[0]
    n_chunks = num_splats // chunk_max_size + (num_splats % chunk_max_size != 0)
    indices = torch.arange(num_splats)
    indices = sort_centers(means, indices)

    float_properties = [
        "min_x",
        "min_y",
        "min_z",
        "max_x",
        "max_y",
        "max_z",
        "min_scale_x",
        "min_scale_y",
        "min_scale_z",
        "max_scale_x",
        "max_scale_y",
        "max_scale_z",
        "min_r",
        "min_g",
        "min_b",
        "max_r",
        "max_g",
        "max_b",
    ]
    uint_properties = [
        "packed_position",
        "packed_rotation",
        "packed_scale",
        "packed_color",
    ]
    buffer = BytesIO()

    # Write PLY header
    buffer.write(b"ply\n")
    buffer.write(b"format binary_little_endian 1.0\n")
    buffer.write(f"element chunk {n_chunks}\n".encode())
    for prop in float_properties:
        buffer.write(f"property float {prop}\n".encode())
    buffer.write(f"element vertex {num_splats}\n".encode())
    for prop in uint_properties:
        buffer.write(f"property uint {prop}\n".encode())
    buffer.write(f"element sh {num_splats}\n".encode())
    for j in range(shN.shape[1]):
        buffer.write(f"property uchar f_rest_{j}\n".encode())
    buffer.write(b"end_header\n")

    chunk_data = []
    splat_data = []
    sh_data = []
    for chunk_idx in range(n_chunks):
        chunk_end_idx = min((chunk_idx + 1) * chunk_max_size, num_splats)
        chunk_start_idx = chunk_idx * chunk_max_size
        splat_idxs = indices[chunk_start_idx:chunk_end_idx]

        # Bounds
        # Means
        chunk_means = means[splat_idxs]
        min_means = torch.min(chunk_means, dim=0).values
        max_means = torch.max(chunk_means, dim=0).values
        mean_bounds = torch.cat([min_means, max_means])
        # Scales
        chunk_scales = scales[splat_idxs]
        min_scales = torch.min(chunk_scales, dim=0).values
        max_scales = torch.max(chunk_scales, dim=0).values
        min_scales = torch.clamp(min_scales, -20, 20)
        max_scales = torch.clamp(max_scales, -20, 20)
        scale_bounds = torch.cat([min_scales, max_scales])
        # Colors
        chunk_colors = sh0_colors[splat_idxs]
        min_colors = torch.min(chunk_colors, dim=0).values
        max_colors = torch.max(chunk_colors, dim=0).values
        color_bounds = torch.cat([min_colors, max_colors])
        chunk_data.extend([mean_bounds, scale_bounds, color_bounds])

        # Quantized properties:
        # Means
        normalized_means = (chunk_means - min_means) / (max_means - min_means)
        means_i = pack_111011(
            normalized_means[:, 0],
            normalized_means[:, 1],
            normalized_means[:, 2],
        )
        # Quaternions
        chunk_quats = quats[splat_idxs]
        quat_i = pack_rotation(chunk_quats)
        # Scales
        normalized_scales = (chunk_scales - min_scales) / (max_scales - min_scales)
        scales_i = pack_111011(
            normalized_scales[:, 0],
            normalized_scales[:, 1],
            normalized_scales[:, 2],
        )
        # Colors
        normalized_colors = (chunk_colors - min_colors) / (max_colors - min_colors)
        chunk_opacities = opacities[splat_idxs]
        chunk_opacities = 1 / (1 + torch.exp(-chunk_opacities))
        chunk_opacities = chunk_opacities.unsqueeze(-1)
        normalized_colors_i = torch.cat([normalized_colors, chunk_opacities], dim=-1)
        color_i = pack_8888(
            normalized_colors_i[:, 0],
            normalized_colors_i[:, 1],
            normalized_colors_i[:, 2],
            normalized_colors_i[:, 3],
        )
        splat_data_chunk = torch.stack([means_i, quat_i, scales_i, color_i], dim=1)
        splat_data_chunk = splat_data_chunk.ravel().to(torch.int64)
        splat_data.extend([splat_data_chunk])

        # Quantized spherical harmonics
        shN_chunk = shN[splat_idxs]
        shN_chunk_quantized = (shN_chunk / 8 + 0.5) * 256
        shN_chunk_quantized = torch.clamp(torch.trunc(shN_chunk_quantized), 0, 255)
        shN_chunk_quantized = shN_chunk_quantized.to(torch.uint8)
        sh_data.extend([shN_chunk_quantized.ravel()])

    float_dtype = np.dtype(np.float32).newbyteorder("<")
    uint32_dtype = np.dtype(np.uint32).newbyteorder("<")
    uint8_dtype = np.dtype(np.uint8)

    buffer.write(
        torch.cat(chunk_data).detach().cpu().numpy().astype(float_dtype).tobytes()
    )
    buffer.write(
        torch.cat(splat_data).detach().cpu().numpy().astype(uint32_dtype).tobytes()
    )
    buffer.write(
        torch.cat(sh_data).detach().cpu().numpy().astype(uint8_dtype).tobytes()
    )

    return buffer.getvalue()


def splat2ply_bytes(
    means: torch.Tensor,
    scales: torch.Tensor,
    quats: torch.Tensor,
    opacities: torch.Tensor,
    sh0: torch.Tensor,
    shN: torch.Tensor,
) -> bytes:
    """Return the binary Ply file. Supported by almost all viewers.

    Args:
        means (torch.Tensor): Splat means. Shape (N, 3)
        scales (torch.Tensor): Splat scales. Shape (N, 3)
        quats (torch.Tensor): Splat quaternions. Shape (N, 4)
        opacities (torch.Tensor): Splat opacities. Shape (N,)
        sh0 (torch.Tensor): Spherical harmonics. Shape (N, 3)
        shN (torch.Tensor): Spherical harmonics. Shape (N, K*3)

    Returns:
        bytes: Binary Ply file representing the model.
    """

    num_splats = means.shape[0]
    buffer = BytesIO()
    
    # Write PLY header
    buffer.write(b"ply\n")
    buffer.write(b"format binary_little_endian 1.0\n")
    buffer.write(f"element vertex {num_splats}\n".encode())
    buffer.write(b"property float x\n")
    buffer.write(b"property float y\n")
    buffer.write(b"property float z\n")
    for i, data in enumerate([sh0, shN]):
        prefix = "f_dc" if i == 0 else "f_rest"
        for j in range(data.shape[1]):
            buffer.write(f"property float {prefix}_{j}\n".encode())
    buffer.write(b"property float opacity\n")
    for i in range(scales.shape[1]):
        buffer.write(f"property float scale_{i}\n".encode())
    for i in range(quats.shape[1]):
        buffer.write(f"property float rot_{i}\n".encode())
    buffer.write(b"end_header\n")

    # Concatenate all tensors in the correct order
    splat_data = torch.cat(
        [means, sh0, shN, opacities.unsqueeze(1), scales, quats], dim=1
    )
    # Ensure correct dtype
    splat_data = splat_data.to(torch.float32)

    # Write binary data
    float_dtype = np.dtype(np.float32).newbyteorder("<")
    buffer.write(splat_data.detach().cpu().numpy().astype(float_dtype).tobytes())

    return buffer.getvalue()


def splat2splat_bytes(
    means: torch.Tensor,
    scales: torch.Tensor,
    quats: torch.Tensor,
    opacities: torch.Tensor,
    sh0: torch.Tensor,
) -> bytes:
    """Return the binary Splat file. Supported by antimatter15 viewer.

    Args:
        means (torch.Tensor): Splat means. Shape (N, 3)
        scales (torch.Tensor): Splat scales. Shape (N, 3)
        quats (torch.Tensor): Splat quaternions. Shape (N, 4)
        opacities (torch.Tensor): Splat opacities. Shape (N,)
        sh0 (torch.Tensor): Spherical harmonics. Shape (N, 3)

    Returns:
        bytes: Binary Splat file representing the model.
    """

    # Preprocess
    scales = torch.exp(scales)
    sh0_color = sh2rgb(sh0)
    colors = torch.cat([sh0_color, torch.sigmoid(opacities).unsqueeze(-1)], dim=1)
    colors = (colors * 255).clamp(0, 255).to(torch.uint8)

    rots = (quats / torch.linalg.norm(quats, dim=1, keepdim=True)) * 128 + 128
    rots = rots.clamp(0, 255).to(torch.uint8)

    # Sort splats
    num_splats = means.shape[0]
    indices = sort_centers(means, torch.arange(num_splats))

    # Reorder everything
    means = means[indices]
    scales = scales[indices]
    colors = colors[indices]
    rots = rots[indices]

    float_dtype = np.dtype(np.float32).newbyteorder("<")
    means_np = means.detach().cpu().numpy().astype(float_dtype)
    scales_np = scales.detach().cpu().numpy().astype(float_dtype)
    colors_np = colors.detach().cpu().numpy().astype(np.uint8)
    rots_np = rots.detach().cpu().numpy().astype(np.uint8)

    buffer = BytesIO()
    for i in range(num_splats):
        buffer.write(means_np[i].tobytes())
        buffer.write(scales_np[i].tobytes())
        buffer.write(colors_np[i].tobytes())
        buffer.write(rots_np[i].tobytes())

    return buffer.getvalue()


def export_splats(
    means: torch.Tensor,
    scales: torch.Tensor,
    quats: torch.Tensor,
    opacities: torch.Tensor,
    sh0: torch.Tensor,
    shN: torch.Tensor,
    format: Literal["ply", "splat", "ply_compressed"] = "ply",
    save_to: Optional[str] = None,
) -> bytes:
    """Export a Gaussian Splats model to bytes.
    The three supported formats are:
    - ply: A standard PLY file format. Supported by most viewers.
    - splat: A custom Splat file format. Supported by antimatter15 viewer.
    - ply_compressed: A compressed PLY file format. Used by Supersplat viewer.

    Args:
        means (torch.Tensor): Splat means. Shape (N, 3)
        scales (torch.Tensor): Splat scales. Shape (N, 3)
        quats (torch.Tensor): Splat quaternions. Shape (N, 4)
        opacities (torch.Tensor): Splat opacities. Shape (N,)
        sh0 (torch.Tensor): Spherical harmonics. Shape (N, 1, 3)
        shN (torch.Tensor): Spherical harmonics. Shape (N, K, 3)
        format (str): Export format. Options: "ply", "splat", "ply_compressed". Default: "ply"
        save_to (str): Output file path. If provided, the bytes will be written to file.
    """
    total_splats = means.shape[0]
    assert means.shape == (total_splats, 3), "Means must be of shape (N, 3)"
    assert scales.shape == (total_splats, 3), "Scales must be of shape (N, 3)"
    assert quats.shape == (total_splats, 4), "Quaternions must be of shape (N, 4)"
    assert opacities.shape == (total_splats,), "Opacities must be of shape (N,)"
    assert sh0.shape == (total_splats, 1, 3), "sh0 must be of shape (N, 1, 3)"
    assert (
        shN.ndim == 3 and shN.shape[0] == total_splats and shN.shape[2] == 3
    ), f"shN must be of shape (N, K, 3), got {shN.shape}"
    
    # Reshape spherical harmonics
    sh0 = sh0.squeeze(1)  # Shape (N, 3)
    shN = shN.permute(0, 2, 1).reshape(means.shape[0], -1)  # Shape (N, K * 3)

    # Check for NaN or Inf values
    invalid_mask = (
        torch.isnan(means).any(dim=1)
        | torch.isinf(means).any(dim=1)
        | torch.isnan(scales).any(dim=1)
        | torch.isinf(scales).any(dim=1)
        | torch.isnan(quats).any(dim=1)
        | torch.isinf(quats).any(dim=1)
        | torch.isnan(opacities).any(dim=0)
        | torch.isinf(opacities).any(dim=0)
        | torch.isnan(sh0).any(dim=1)
        | torch.isinf(sh0).any(dim=1)
        | torch.isnan(shN).any(dim=1)
        | torch.isinf(shN).any(dim=1)
    )

    # Filter out invalid entries
    valid_mask = ~invalid_mask
    means = means[valid_mask]
    scales = scales[valid_mask]
    quats = quats[valid_mask]
    opacities = opacities[valid_mask]
    sh0 = sh0[valid_mask]
    shN = shN[valid_mask]

    if format == "ply":
        data = splat2ply_bytes(means, scales, quats, opacities, sh0, shN)
    elif format == "splat":
        data = splat2splat_bytes(means, scales, quats, opacities, sh0)
    elif format == "ply_compressed":
        data = splat2ply_bytes_compressed(means, scales, quats, opacities, sh0, shN)
    else:
        raise ValueError(f"Unsupported format: {format}")

    if save_to:
        with open(save_to, "wb") as binary_file:
            binary_file.write(data)

    return data