File size: 5,978 Bytes
2568013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import math
import os
import time
from pathlib import Path
from typing import Literal, Optional

import numpy as np
import torch
import tyro
from PIL import Image
from torch import Tensor, optim

from gsplat import rasterization, rasterization_2dgs


class SimpleTrainer:
    """Trains random gaussians to fit an image."""

    def __init__(
        self,
        gt_image: Tensor,
        num_points: int = 2000,
    ):
        self.device = torch.device("cuda:0")
        self.gt_image = gt_image.to(device=self.device)
        self.num_points = num_points

        fov_x = math.pi / 2.0
        self.H, self.W = gt_image.shape[0], gt_image.shape[1]
        self.focal = 0.5 * float(self.W) / math.tan(0.5 * fov_x)
        self.img_size = torch.tensor([self.W, self.H, 1], device=self.device)

        self._init_gaussians()

    def _init_gaussians(self):
        """Random gaussians"""
        bd = 2

        self.means = bd * (torch.rand(self.num_points, 3, device=self.device) - 0.5)
        self.scales = torch.rand(self.num_points, 3, device=self.device)
        d = 3
        self.rgbs = torch.rand(self.num_points, d, device=self.device)

        u = torch.rand(self.num_points, 1, device=self.device)
        v = torch.rand(self.num_points, 1, device=self.device)
        w = torch.rand(self.num_points, 1, device=self.device)

        self.quats = torch.cat(
            [
                torch.sqrt(1.0 - u) * torch.sin(2.0 * math.pi * v),
                torch.sqrt(1.0 - u) * torch.cos(2.0 * math.pi * v),
                torch.sqrt(u) * torch.sin(2.0 * math.pi * w),
                torch.sqrt(u) * torch.cos(2.0 * math.pi * w),
            ],
            -1,
        )
        self.opacities = torch.ones((self.num_points), device=self.device)

        self.viewmat = torch.tensor(
            [
                [1.0, 0.0, 0.0, 0.0],
                [0.0, 1.0, 0.0, 0.0],
                [0.0, 0.0, 1.0, 8.0],
                [0.0, 0.0, 0.0, 1.0],
            ],
            device=self.device,
        )
        self.background = torch.zeros(d, device=self.device)

        self.means.requires_grad = True
        self.scales.requires_grad = True
        self.quats.requires_grad = True
        self.rgbs.requires_grad = True
        self.opacities.requires_grad = True
        self.viewmat.requires_grad = False

    def train(
        self,
        iterations: int = 1000,
        lr: float = 0.01,
        save_imgs: bool = False,
        model_type: Literal["3dgs", "2dgs"] = "3dgs",
    ):
        optimizer = optim.Adam(
            [self.rgbs, self.means, self.scales, self.opacities, self.quats], lr
        )
        mse_loss = torch.nn.MSELoss()
        frames = []
        times = [0] * 2  # rasterization, backward
        K = torch.tensor(
            [
                [self.focal, 0, self.W / 2],
                [0, self.focal, self.H / 2],
                [0, 0, 1],
            ],
            device=self.device,
        )

        if model_type == "3dgs":
            rasterize_fnc = rasterization
        elif model_type == "2dgs":
            rasterize_fnc = rasterization_2dgs

        for iter in range(iterations):
            start = time.time()

            renders = rasterize_fnc(
                self.means,
                self.quats / self.quats.norm(dim=-1, keepdim=True),
                self.scales,
                torch.sigmoid(self.opacities),
                torch.sigmoid(self.rgbs),
                self.viewmat[None],
                K[None],
                self.W,
                self.H,
                packed=False,
            )[0]
            out_img = renders[0]
            torch.cuda.synchronize()
            times[0] += time.time() - start
            loss = mse_loss(out_img, self.gt_image)
            optimizer.zero_grad()
            start = time.time()
            loss.backward()
            torch.cuda.synchronize()
            times[1] += time.time() - start
            optimizer.step()
            print(f"Iteration {iter + 1}/{iterations}, Loss: {loss.item()}")

            if save_imgs and iter % 5 == 0:
                frames.append((out_img.detach().cpu().numpy() * 255).astype(np.uint8))
        if save_imgs:
            # save them as a gif with PIL
            frames = [Image.fromarray(frame) for frame in frames]
            out_dir = os.path.join(os.getcwd(), "results")
            os.makedirs(out_dir, exist_ok=True)
            frames[0].save(
                f"{out_dir}/training.gif",
                save_all=True,
                append_images=frames[1:],
                optimize=False,
                duration=5,
                loop=0,
            )
        print(f"Total(s):\nRasterization: {times[0]:.3f}, Backward: {times[1]:.3f}")
        print(
            f"Per step(s):\nRasterization: {times[0]/iterations:.5f}, Backward: {times[1]/iterations:.5f}"
        )


def image_path_to_tensor(image_path: Path):
    import torchvision.transforms as transforms

    img = Image.open(image_path)
    transform = transforms.ToTensor()
    img_tensor = transform(img).permute(1, 2, 0)[..., :3]
    return img_tensor


def main(
    height: int = 256,
    width: int = 256,
    num_points: int = 100000,
    save_imgs: bool = True,
    img_path: Optional[Path] = None,
    iterations: int = 1000,
    lr: float = 0.01,
    model_type: Literal["3dgs", "2dgs"] = "3dgs",
) -> None:
    if img_path:
        gt_image = image_path_to_tensor(img_path)
    else:
        gt_image = torch.ones((height, width, 3)) * 1.0
        # make top left and bottom right red, blue
        gt_image[: height // 2, : width // 2, :] = torch.tensor([1.0, 0.0, 0.0])
        gt_image[height // 2 :, width // 2 :, :] = torch.tensor([0.0, 0.0, 1.0])

    trainer = SimpleTrainer(gt_image=gt_image, num_points=num_points)
    trainer.train(
        iterations=iterations,
        lr=lr,
        save_imgs=save_imgs,
        model_type=model_type,
    )


if __name__ == "__main__":
    tyro.cli(main)