File size: 22,151 Bytes
2568013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 |
# # Copyright 2024 Yuehao Wang (https://github.com/yuehaowang). This part of code is borrowed form ["Bilateral Guided Radiance Field Processing"](https://bilarfpro.github.io/).
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This is a standalone PyTorch implementation of 3D bilateral grid and CP-decomposed 4D bilateral grid.
To use this module, you can download the "lib_bilagrid.py" file and simply put it in your project directory.
For the details, please check our research project: ["Bilateral Guided Radiance Field Processing"](https://bilarfpro.github.io/).
#### Dependencies
In addition to PyTorch and Numpy, please install [tensorly](https://github.com/tensorly/tensorly).
We have tested this module on Python 3.9.18, PyTorch 2.0.1 (CUDA 11), tensorly 0.8.1, and Numpy 1.25.2.
#### Overview
- For bilateral guided training, you need to construct a `BilateralGrid` instance, which can hold multiple bilateral grids
for input views. Then, use `slice` function to obtain transformed RGB output and the corresponding affine transformations.
- For bilateral guided finishing, you need to instantiate a `BilateralGridCP4D` object and use `slice4d`.
#### Examples
- Bilateral grid for approximating ISP:
<a target="_blank" href="https://colab.research.google.com/drive/1tx2qKtsHH9deDDnParMWrChcsa9i7Prr?usp=sharing">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
- Low-rank 4D bilateral grid for MR enhancement:
<a target="_blank" href="https://colab.research.google.com/drive/17YOjQqgWFT3QI1vysOIH494rMYtt_mHL?usp=sharing">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
Below is the API reference.
"""
import tensorly as tl
import torch
import torch.nn.functional as F
from torch import nn
tl.set_backend("pytorch")
def color_correct(
img: torch.Tensor, ref: torch.Tensor, num_iters: int = 5, eps: float = 0.5 / 255
) -> torch.Tensor:
"""
Warp `img` to match the colors in `ref_img` using iterative color matching.
This function performs color correction by warping the colors of the input image
to match those of a reference image. It uses a least squares method to find a
transformation that maps the input image's colors to the reference image's colors.
The algorithm iteratively solves a system of linear equations, updating the set of
unsaturated pixels in each iteration. This approach helps handle non-linear color
transformations and reduces the impact of clipping.
Args:
img (torch.Tensor): Input image to be color corrected. Shape: [..., num_channels]
ref (torch.Tensor): Reference image to match colors. Shape: [..., num_channels]
num_iters (int, optional): Number of iterations for the color matching process.
Default is 5.
eps (float, optional): Small value to determine the range of unclipped pixels.
Default is 0.5 / 255.
Returns:
torch.Tensor: Color corrected image with the same shape as the input image.
Note:
- Both input and reference images should be in the range [0, 1].
- The function works with any number of channels, but typically used with 3 (RGB).
"""
if img.shape[-1] != ref.shape[-1]:
raise ValueError(
f"img's {img.shape[-1]} and ref's {ref.shape[-1]} channels must match"
)
num_channels = img.shape[-1]
img_mat = img.reshape([-1, num_channels])
ref_mat = ref.reshape([-1, num_channels])
def is_unclipped(z):
return (z >= eps) & (z <= 1 - eps) # z \in [eps, 1-eps].
mask0 = is_unclipped(img_mat)
# Because the set of saturated pixels may change after solving for a
# transformation, we repeatedly solve a system `num_iters` times and update
# our estimate of which pixels are saturated.
for _ in range(num_iters):
# Construct the left hand side of a linear system that contains a quadratic
# expansion of each pixel of `img`.
a_mat = []
for c in range(num_channels):
a_mat.append(img_mat[:, c : (c + 1)] * img_mat[:, c:]) # Quadratic term.
a_mat.append(img_mat) # Linear term.
a_mat.append(torch.ones_like(img_mat[:, :1])) # Bias term.
a_mat = torch.cat(a_mat, dim=-1)
warp = []
for c in range(num_channels):
# Construct the right hand side of a linear system containing each color
# of `ref`.
b = ref_mat[:, c]
# Ignore rows of the linear system that were saturated in the input or are
# saturated in the current corrected color estimate.
mask = mask0[:, c] & is_unclipped(img_mat[:, c]) & is_unclipped(b)
ma_mat = torch.where(mask[:, None], a_mat, torch.zeros_like(a_mat))
mb = torch.where(mask, b, torch.zeros_like(b))
w = torch.linalg.lstsq(ma_mat, mb, rcond=-1)[0]
assert torch.all(torch.isfinite(w))
warp.append(w)
warp = torch.stack(warp, dim=-1)
# Apply the warp to update img_mat.
img_mat = torch.clip(torch.matmul(a_mat, warp), 0, 1)
corrected_img = torch.reshape(img_mat, img.shape)
return corrected_img
def bilateral_grid_tv_loss(model, config):
"""Computes total variations of bilateral grids."""
total_loss = 0.0
for bil_grids in model.bil_grids:
total_loss += config.bilgrid_tv_loss_mult * total_variation_loss(
bil_grids.grids
)
return total_loss
def color_affine_transform(affine_mats, rgb):
"""Applies color affine transformations.
Args:
affine_mats (torch.Tensor): Affine transformation matrices. Supported shape: $(..., 3, 4)$.
rgb (torch.Tensor): Input RGB values. Supported shape: $(..., 3)$.
Returns:
Output transformed colors of shape $(..., 3)$.
"""
return (
torch.matmul(affine_mats[..., :3], rgb.unsqueeze(-1)).squeeze(-1)
+ affine_mats[..., 3]
)
def _num_tensor_elems(t):
return max(torch.prod(torch.tensor(t.size()[1:]).float()).item(), 1.0)
def total_variation_loss(x): # noqa: F811
"""Returns total variation on multi-dimensional tensors.
Args:
x (torch.Tensor): The input tensor with shape $(B, C, ...)$, where $B$ is the batch size and $C$ is the channel size.
"""
batch_size = x.shape[0]
tv = 0
for i in range(2, len(x.shape)):
n_res = x.shape[i]
idx1 = torch.arange(1, n_res, device=x.device)
idx2 = torch.arange(0, n_res - 1, device=x.device)
x1 = x.index_select(i, idx1)
x2 = x.index_select(i, idx2)
count = _num_tensor_elems(x1)
tv += torch.pow((x1 - x2), 2).sum() / count
return tv / batch_size
def slice(bil_grids, xy, rgb, grid_idx):
"""Slices a batch of 3D bilateral grids by pixel coordinates `xy` and gray-scale guidances of pixel colors `rgb`.
Supports 2-D, 3-D, and 4-D input shapes. The first dimension of the input is the batch size
and the last dimension is 2 for `xy`, 3 for `rgb`, and 1 for `grid_idx`.
The return value is a dictionary containing the affine transformations `affine_mats` sliced from bilateral grids and
the output color `rgb_out` after applying the afffine transformations.
In the 2-D input case, `xy` is a $(N, 2)$ tensor, `rgb` is a $(N, 3)$ tensor, and `grid_idx` is a $(N, 1)$ tensor.
Then `affine_mats[i]` can be obtained via slicing the bilateral grid indexed at `grid_idx[i]` by `xy[i, :]` and `rgb2gray(rgb[i, :])`.
For 3-D and 4-D input cases, the behavior of indexing bilateral grids and coordinates is the same with the 2-D case.
.. note::
This function can be regarded as a wrapper of `color_affine_transform` and `BilateralGrid` with a slight performance improvement.
When `grid_idx` contains a unique index, only a single bilateral grid will used during the slicing. In this case, this function will not
perform tensor indexing to avoid data copy and extra memory
(see [this](https://discuss.pytorch.org/t/does-indexing-a-tensor-return-a-copy-of-it/164905)).
Args:
bil_grids (`BilateralGrid`): An instance of $N$ bilateral grids.
xy (torch.Tensor): The x-y coordinates of shape $(..., 2)$ in the range of $[0,1]$.
rgb (torch.Tensor): The RGB values of shape $(..., 3)$ for computing the guidance coordinates, ranging in $[0,1]$.
grid_idx (torch.Tensor): The indices of bilateral grids for each slicing. Shape: $(..., 1)$.
Returns:
A dictionary with keys and values as follows:
```
{
"rgb": Transformed RGB colors. Shape: (..., 3),
"rgb_affine_mats": The sliced affine transformation matrices from bilateral grids. Shape: (..., 3, 4)
}
```
"""
sh_ = rgb.shape
grid_idx_unique = torch.unique(grid_idx)
if len(grid_idx_unique) == 1:
# All pixels are from a single view.
grid_idx = grid_idx_unique # (1,)
xy = xy.unsqueeze(0) # (1, ..., 2)
rgb = rgb.unsqueeze(0) # (1, ..., 3)
else:
# Pixels are randomly sampled from different views.
if len(grid_idx.shape) == 4:
grid_idx = grid_idx[:, 0, 0, 0] # (chunk_size,)
elif len(grid_idx.shape) == 3:
grid_idx = grid_idx[:, 0, 0] # (chunk_size,)
elif len(grid_idx.shape) == 2:
grid_idx = grid_idx[:, 0] # (chunk_size,)
else:
raise ValueError(
"The input to bilateral grid slicing is not supported yet."
)
affine_mats = bil_grids(xy, rgb, grid_idx)
rgb = color_affine_transform(affine_mats, rgb)
return {
"rgb": rgb.reshape(*sh_),
"rgb_affine_mats": affine_mats.reshape(
*sh_[:-1], affine_mats.shape[-2], affine_mats.shape[-1]
),
}
class BilateralGrid(nn.Module):
"""Class for 3D bilateral grids.
Holds one or more than one bilateral grids.
"""
def __init__(self, num, grid_X=16, grid_Y=16, grid_W=8):
"""
Args:
num (int): The number of bilateral grids (i.e., the number of views).
grid_X (int): Defines grid width $W$.
grid_Y (int): Defines grid height $H$.
grid_W (int): Defines grid guidance dimension $L$.
"""
super(BilateralGrid, self).__init__()
self.grid_width = grid_X
"""Grid width. Type: int."""
self.grid_height = grid_Y
"""Grid height. Type: int."""
self.grid_guidance = grid_W
"""Grid guidance dimension. Type: int."""
# Initialize grids.
grid = self._init_identity_grid()
self.grids = nn.Parameter(grid.tile(num, 1, 1, 1, 1)) # (N, 12, L, H, W)
""" A 5-D tensor of shape $(N, 12, L, H, W)$."""
# Weights of BT601 RGB-to-gray.
self.register_buffer("rgb2gray_weight", torch.Tensor([[0.299, 0.587, 0.114]]))
self.rgb2gray = lambda rgb: (rgb @ self.rgb2gray_weight.T) * 2.0 - 1.0
""" A function that converts RGB to gray-scale guidance in $[-1, 1]$."""
def _init_identity_grid(self):
grid = torch.tensor(
[
1.0,
0,
0,
0,
0,
1.0,
0,
0,
0,
0,
1.0,
0,
]
).float()
grid = grid.repeat(
[self.grid_guidance * self.grid_height * self.grid_width, 1]
) # (L * H * W, 12)
grid = grid.reshape(
1, self.grid_guidance, self.grid_height, self.grid_width, -1
) # (1, L, H, W, 12)
grid = grid.permute(0, 4, 1, 2, 3) # (1, 12, L, H, W)
return grid
def tv_loss(self):
"""Computes and returns total variation loss on the bilateral grids."""
return total_variation_loss(self.grids)
def forward(self, grid_xy, rgb, idx=None):
"""Bilateral grid slicing. Supports 2-D, 3-D, 4-D, and 5-D input.
For the 2-D, 3-D, and 4-D cases, please refer to `slice`.
For the 5-D cases, `idx` will be unused and the first dimension of `xy` should be
equal to the number of bilateral grids. Then this function becomes PyTorch's
[`F.grid_sample`](https://pytorch.org/docs/stable/generated/torch.nn.functional.grid_sample.html).
Args:
grid_xy (torch.Tensor): The x-y coordinates in the range of $[0,1]$.
rgb (torch.Tensor): The RGB values in the range of $[0,1]$.
idx (torch.Tensor): The bilateral grid indices.
Returns:
Sliced affine matrices of shape $(..., 3, 4)$.
"""
grids = self.grids
input_ndims = len(grid_xy.shape)
assert len(rgb.shape) == input_ndims
if input_ndims > 1 and input_ndims < 5:
# Convert input into 5D
for i in range(5 - input_ndims):
grid_xy = grid_xy.unsqueeze(1)
rgb = rgb.unsqueeze(1)
assert idx is not None
elif input_ndims != 5:
raise ValueError(
"Bilateral grid slicing only takes either 2D, 3D, 4D and 5D inputs"
)
grids = self.grids
if idx is not None:
grids = grids[idx]
assert grids.shape[0] == grid_xy.shape[0]
# Generate slicing coordinates.
grid_xy = (grid_xy - 0.5) * 2 # Rescale to [-1, 1].
grid_z = self.rgb2gray(rgb)
# print(grid_xy.shape, grid_z.shape)
# exit()
grid_xyz = torch.cat([grid_xy, grid_z], dim=-1) # (N, m, h, w, 3)
affine_mats = F.grid_sample(
grids, grid_xyz, mode="bilinear", align_corners=True, padding_mode="border"
) # (N, 12, m, h, w)
affine_mats = affine_mats.permute(0, 2, 3, 4, 1) # (N, m, h, w, 12)
affine_mats = affine_mats.reshape(
*affine_mats.shape[:-1], 3, 4
) # (N, m, h, w, 3, 4)
for _ in range(5 - input_ndims):
affine_mats = affine_mats.squeeze(1)
return affine_mats
def slice4d(bil_grid4d, xyz, rgb):
"""Slices a 4D bilateral grid by point coordinates `xyz` and gray-scale guidances of radiance colors `rgb`.
Args:
bil_grid4d (`BilateralGridCP4D`): The input 4D bilateral grid.
xyz (torch.Tensor): The xyz coordinates with shape $(..., 3)$.
rgb (torch.Tensor): The RGB values with shape $(..., 3)$.
Returns:
A dictionary with keys and values as follows:
```
{
"rgb": Transformed radiance RGB colors. Shape: (..., 3),
"rgb_affine_mats": The sliced affine transformation matrices from the 4D bilateral grid. Shape: (..., 3, 4)
}
```
"""
affine_mats = bil_grid4d(xyz, rgb)
rgb = color_affine_transform(affine_mats, rgb)
return {"rgb": rgb, "rgb_affine_mats": affine_mats}
class _ScaledTanh(nn.Module):
def __init__(self, s=2.0):
super().__init__()
self.scaler = s
def forward(self, x):
return torch.tanh(self.scaler * x)
class BilateralGridCP4D(nn.Module):
"""Class for low-rank 4D bilateral grids."""
def __init__(
self,
grid_X=16,
grid_Y=16,
grid_Z=16,
grid_W=8,
rank=5,
learn_gray=True,
gray_mlp_width=8,
gray_mlp_depth=2,
init_noise_scale=1e-6,
bound=2.0,
):
"""
Args:
grid_X (int): Defines grid width.
grid_Y (int): Defines grid height.
grid_Z (int): Defines grid depth.
grid_W (int): Defines grid guidance dimension.
rank (int): Rank of the 4D bilateral grid.
learn_gray (bool): If True, an MLP will be learned to convert RGB colors to gray-scale guidances.
gray_mlp_width (int): The MLP width for learnable guidance.
gray_mlp_depth (int): The number of MLP layers for learnable guidance.
init_noise_scale (float): The noise scale of the initialized factors.
bound (float): The bound of the xyz coordinates.
"""
super(BilateralGridCP4D, self).__init__()
self.grid_X = grid_X
"""Grid width. Type: int."""
self.grid_Y = grid_Y
"""Grid height. Type: int."""
self.grid_Z = grid_Z
"""Grid depth. Type: int."""
self.grid_W = grid_W
"""Grid guidance dimension. Type: int."""
self.rank = rank
"""Rank of the 4D bilateral grid. Type: int."""
self.learn_gray = learn_gray
"""Flags of learnable guidance is used. Type: bool."""
self.gray_mlp_width = gray_mlp_width
"""The MLP width for learnable guidance. Type: int."""
self.gray_mlp_depth = gray_mlp_depth
"""The MLP depth for learnable guidance. Type: int."""
self.init_noise_scale = init_noise_scale
"""The noise scale of the initialized factors. Type: float."""
self.bound = bound
"""The bound of the xyz coordinates. Type: float."""
self._init_cp_factors_parafac()
self.rgb2gray = None
""" A function that converts RGB to gray-scale guidances in $[-1, 1]$.
If `learn_gray` is True, this will be an MLP network."""
if self.learn_gray:
def rgb2gray_mlp_linear(layer):
return nn.Linear(
self.gray_mlp_width,
self.gray_mlp_width if layer < self.gray_mlp_depth - 1 else 1,
)
def rgb2gray_mlp_actfn(_):
return nn.ReLU(inplace=True)
self.rgb2gray = nn.Sequential(
*(
[nn.Linear(3, self.gray_mlp_width)]
+ [
nn_module(layer)
for layer in range(1, self.gray_mlp_depth)
for nn_module in [rgb2gray_mlp_actfn, rgb2gray_mlp_linear]
]
+ [_ScaledTanh(2.0)]
)
)
else:
# Weights of BT601/BT470 RGB-to-gray.
self.register_buffer(
"rgb2gray_weight", torch.Tensor([[0.299, 0.587, 0.114]])
)
self.rgb2gray = lambda rgb: (rgb @ self.rgb2gray_weight.T) * 2.0 - 1.0
def _init_identity_grid(self):
grid = torch.tensor(
[
1.0,
0,
0,
0,
0,
1.0,
0,
0,
0,
0,
1.0,
0,
]
).float()
grid = grid.repeat([self.grid_W * self.grid_Z * self.grid_Y * self.grid_X, 1])
grid = grid.reshape(self.grid_W, self.grid_Z, self.grid_Y, self.grid_X, -1)
grid = grid.permute(4, 0, 1, 2, 3) # (12, grid_W, grid_Z, grid_Y, grid_X)
return grid
def _init_cp_factors_parafac(self):
# Initialize identity grids.
init_grids = self._init_identity_grid()
# Random noises are added to avoid singularity.
init_grids = torch.randn_like(init_grids) * self.init_noise_scale + init_grids
from tensorly.decomposition import parafac
# Initialize grid CP factors
_, facs = parafac(init_grids.clone().detach(), rank=self.rank)
self.num_facs = len(facs)
self.fac_0 = nn.Linear(facs[0].shape[0], facs[0].shape[1], bias=False)
self.fac_0.weight = nn.Parameter(facs[0]) # (12, rank)
for i in range(1, self.num_facs):
fac = facs[i].T # (rank, grid_size)
fac = fac.view(1, fac.shape[0], fac.shape[1], 1) # (1, rank, grid_size, 1)
self.register_buffer(f"fac_{i}_init", fac)
fac_resid = torch.zeros_like(fac)
self.register_parameter(f"fac_{i}", nn.Parameter(fac_resid))
def tv_loss(self):
"""Computes and returns total variation loss on the factors of the low-rank 4D bilateral grids."""
total_loss = 0
for i in range(1, self.num_facs):
fac = self.get_parameter(f"fac_{i}")
total_loss += total_variation_loss(fac)
return total_loss
def forward(self, xyz, rgb):
"""Low-rank 4D bilateral grid slicing.
Args:
xyz (torch.Tensor): The xyz coordinates with shape $(..., 3)$.
rgb (torch.Tensor): The corresponding RGB values with shape $(..., 3)$.
Returns:
Sliced affine matrices with shape $(..., 3, 4)$.
"""
sh_ = xyz.shape
xyz = xyz.reshape(-1, 3) # flatten (N, 3)
rgb = rgb.reshape(-1, 3) # flatten (N, 3)
xyz = xyz / self.bound
assert self.rgb2gray is not None
gray = self.rgb2gray(rgb)
xyzw = torch.cat([xyz, gray], dim=-1) # (N, 4)
xyzw = xyzw.transpose(0, 1) # (4, N)
coords = torch.stack([torch.zeros_like(xyzw), xyzw], dim=-1) # (4, N, 2)
coords = coords.unsqueeze(1) # (4, 1, N, 2)
coef = 1.0
for i in range(1, self.num_facs):
fac = self.get_parameter(f"fac_{i}") + self.get_buffer(f"fac_{i}_init")
coef = coef * F.grid_sample(
fac, coords[[i - 1]], align_corners=True, padding_mode="border"
) # [1, rank, 1, N]
coef = coef.squeeze([0, 2]).transpose(0, 1) # (N, rank) #type: ignore
mat = self.fac_0(coef)
return mat.reshape(*sh_[:-1], 3, 4)
|