File size: 7,522 Bytes
2568013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import random

import numpy as np
import torch
from sklearn.neighbors import NearestNeighbors
from torch import Tensor
import torch.nn.functional as F
import matplotlib.pyplot as plt
from matplotlib import colormaps


class CameraOptModule(torch.nn.Module):
    """Camera pose optimization module."""

    def __init__(self, n: int):
        super().__init__()
        # Delta positions (3D) + Delta rotations (6D)
        self.embeds = torch.nn.Embedding(n, 9)
        # Identity rotation in 6D representation
        self.register_buffer("identity", torch.tensor([1.0, 0.0, 0.0, 0.0, 1.0, 0.0]))

    def zero_init(self):
        torch.nn.init.zeros_(self.embeds.weight)

    def random_init(self, std: float):
        torch.nn.init.normal_(self.embeds.weight, std=std)

    def forward(self, camtoworlds: Tensor, embed_ids: Tensor) -> Tensor:
        """Adjust camera pose based on deltas.

        Args:
            camtoworlds: (..., 4, 4)
            embed_ids: (...,)

        Returns:
            updated camtoworlds: (..., 4, 4)
        """
        assert camtoworlds.shape[:-2] == embed_ids.shape
        batch_shape = camtoworlds.shape[:-2]
        pose_deltas = self.embeds(embed_ids)  # (..., 9)
        dx, drot = pose_deltas[..., :3], pose_deltas[..., 3:]
        rot = rotation_6d_to_matrix(
            drot + self.identity.expand(*batch_shape, -1)
        )  # (..., 3, 3)
        transform = torch.eye(4, device=pose_deltas.device).repeat((*batch_shape, 1, 1))
        transform[..., :3, :3] = rot
        transform[..., :3, 3] = dx
        return torch.matmul(camtoworlds, transform)


class AppearanceOptModule(torch.nn.Module):
    """Appearance optimization module."""

    def __init__(
        self,
        n: int,
        feature_dim: int,
        embed_dim: int = 16,
        sh_degree: int = 3,
        mlp_width: int = 64,
        mlp_depth: int = 2,
    ):
        super().__init__()
        self.embed_dim = embed_dim
        self.sh_degree = sh_degree
        self.embeds = torch.nn.Embedding(n, embed_dim)
        layers = []
        layers.append(
            torch.nn.Linear(embed_dim + feature_dim + (sh_degree + 1) ** 2, mlp_width)
        )
        layers.append(torch.nn.ReLU(inplace=True))
        for _ in range(mlp_depth - 1):
            layers.append(torch.nn.Linear(mlp_width, mlp_width))
            layers.append(torch.nn.ReLU(inplace=True))
        layers.append(torch.nn.Linear(mlp_width, 3))
        self.color_head = torch.nn.Sequential(*layers)

    def forward(
        self, features: Tensor, embed_ids: Tensor, dirs: Tensor, sh_degree: int
    ) -> Tensor:
        """Adjust appearance based on embeddings.

        Args:
            features: (N, feature_dim)
            embed_ids: (C,)
            dirs: (C, N, 3)

        Returns:
            colors: (C, N, 3)
        """
        from gsplat.cuda._torch_impl import _eval_sh_bases_fast

        C, N = dirs.shape[:2]
        # Camera embeddings
        if embed_ids is None:
            embeds = torch.zeros(C, self.embed_dim, device=features.device)
        else:
            embeds = self.embeds(embed_ids)  # [C, D2]
        embeds = embeds[:, None, :].expand(-1, N, -1)  # [C, N, D2]
        # GS features
        features = features[None, :, :].expand(C, -1, -1)  # [C, N, D1]
        # View directions
        dirs = F.normalize(dirs, dim=-1)  # [C, N, 3]
        num_bases_to_use = (sh_degree + 1) ** 2
        num_bases = (self.sh_degree + 1) ** 2
        sh_bases = torch.zeros(C, N, num_bases, device=features.device)  # [C, N, K]
        sh_bases[:, :, :num_bases_to_use] = _eval_sh_bases_fast(num_bases_to_use, dirs)
        # Get colors
        if self.embed_dim > 0:
            h = torch.cat([embeds, features, sh_bases], dim=-1)  # [C, N, D1 + D2 + K]
        else:
            h = torch.cat([features, sh_bases], dim=-1)
        colors = self.color_head(h)
        return colors


def rotation_6d_to_matrix(d6: Tensor) -> Tensor:
    """
    Converts 6D rotation representation by Zhou et al. [1] to rotation matrix
    using Gram--Schmidt orthogonalization per Section B of [1]. Adapted from pytorch3d.
    Args:
        d6: 6D rotation representation, of size (*, 6)

    Returns:
        batch of rotation matrices of size (*, 3, 3)

    [1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H.
    On the Continuity of Rotation Representations in Neural Networks.
    IEEE Conference on Computer Vision and Pattern Recognition, 2019.
    Retrieved from http://arxiv.org/abs/1812.07035
    """

    a1, a2 = d6[..., :3], d6[..., 3:]
    b1 = F.normalize(a1, dim=-1)
    b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1
    b2 = F.normalize(b2, dim=-1)
    b3 = torch.cross(b1, b2, dim=-1)
    return torch.stack((b1, b2, b3), dim=-2)


def knn(x: Tensor, K: int = 4) -> Tensor:
    x_np = x.cpu().numpy()
    model = NearestNeighbors(n_neighbors=K, metric="euclidean").fit(x_np)
    distances, _ = model.kneighbors(x_np)
    return torch.from_numpy(distances).to(x)


def rgb_to_sh(rgb: Tensor) -> Tensor:
    C0 = 0.28209479177387814
    return (rgb - 0.5) / C0


def set_random_seed(seed: int):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)


# ref: https://github.com/hbb1/2d-gaussian-splatting/blob/main/utils/general_utils.py#L163
def colormap(img, cmap="jet"):
    W, H = img.shape[:2]
    dpi = 300
    fig, ax = plt.subplots(1, figsize=(H / dpi, W / dpi), dpi=dpi)
    im = ax.imshow(img, cmap=cmap)
    ax.set_axis_off()
    fig.colorbar(im, ax=ax)
    fig.tight_layout()
    fig.canvas.draw()
    data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
    data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
    img = torch.from_numpy(data).float().permute(2, 0, 1)
    plt.close()
    return img


def apply_float_colormap(img: torch.Tensor, colormap: str = "turbo") -> torch.Tensor:
    """Convert single channel to a color img.

    Args:
        img (torch.Tensor): (..., 1) float32 single channel image.
        colormap (str): Colormap for img.

    Returns:
        (..., 3) colored img with colors in [0, 1].
    """
    img = torch.nan_to_num(img, 0)
    if colormap == "gray":
        return img.repeat(1, 1, 3)
    img_long = (img * 255).long()
    img_long_min = torch.min(img_long)
    img_long_max = torch.max(img_long)
    assert img_long_min >= 0, f"the min value is {img_long_min}"
    assert img_long_max <= 255, f"the max value is {img_long_max}"
    return torch.tensor(
        colormaps[colormap].colors,  # type: ignore
        device=img.device,
    )[img_long[..., 0]]


def apply_depth_colormap(
    depth: torch.Tensor,
    acc: torch.Tensor = None,
    near_plane: float = None,
    far_plane: float = None,
) -> torch.Tensor:
    """Converts a depth image to color for easier analysis.

    Args:
        depth (torch.Tensor): (..., 1) float32 depth.
        acc (torch.Tensor | None): (..., 1) optional accumulation mask.
        near_plane: Closest depth to consider. If None, use min image value.
        far_plane: Furthest depth to consider. If None, use max image value.

    Returns:
        (..., 3) colored depth image with colors in [0, 1].
    """
    near_plane = near_plane or float(torch.min(depth))
    far_plane = far_plane or float(torch.max(depth))
    depth = (depth - near_plane) / (far_plane - near_plane + 1e-10)
    depth = torch.clip(depth, 0.0, 1.0)
    img = apply_float_colormap(depth, colormap="turbo")
    if acc is not None:
        img = img * acc + (1.0 - acc)
    return img