File size: 14,957 Bytes
2568013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
import pycolmap
import numpy as np

import torch
import torch.nn.functional as F
from src.model.encoder.vggt.utils.pose_enc import pose_encoding_to_extri_intri
from src.model.encoder.vggt.utils.geometry import closed_form_inverse_se3, unproject_depth_map_to_point_map
from lightglue import ALIKED, SuperPoint, SIFT
from src.utils.tensor_to_pycolmap import batch_matrix_to_pycolmap, pycolmap_to_batch_matrix


_RESNET_MEAN = [0.485, 0.456, 0.406]
_RESNET_STD = [0.229, 0.224, 0.225]


def generate_rank_by_dino(
    images, query_frame_num, image_size=518, model_name="dinov2_vitb14_reg", device="cuda", spatial_similarity=True
):
    """
    Generate a ranking of frames using DINO ViT features.
    
    Args:
        images: Tensor of shape (S, 3, H, W) with values in range [0, 1]
        query_frame_num: Number of frames to select
        image_size: Size to resize images to before processing
        model_name: Name of the DINO model to use
        device: Device to run the model on
        spatial_similarity: Whether to use spatial token similarity or CLS token similarity
        
    Returns:
        List of frame indices ranked by their representativeness
    """
    dino_v2_model = torch.hub.load('facebookresearch/dinov2', model_name)
    dino_v2_model.eval()
    dino_v2_model = dino_v2_model.to(device)
    
    resnet_mean = torch.tensor(_RESNET_MEAN, device=device).view(1, 3, 1, 1)
    resnet_std = torch.tensor(_RESNET_STD, device=device).view(1, 3, 1, 1)
    images_resnet_norm = (images - resnet_mean) / resnet_std
    
    with torch.no_grad():
        frame_feat = dino_v2_model(images_resnet_norm, is_training=True)
        
    if spatial_similarity:
        frame_feat = frame_feat["x_norm_patchtokens"]
        frame_feat_norm = F.normalize(frame_feat, p=2, dim=1)

        # Compute the similarity matrix
        frame_feat_norm = frame_feat_norm.permute(1, 0, 2)
        similarity_matrix = torch.bmm(
            frame_feat_norm, frame_feat_norm.transpose(-1, -2)
        )
        similarity_matrix = similarity_matrix.mean(dim=0)
    else:
        frame_feat = frame_feat["x_norm_clstoken"]
        frame_feat_norm = F.normalize(frame_feat, p=2, dim=1)
        similarity_matrix = torch.mm(
            frame_feat_norm, frame_feat_norm.transpose(-1, -2)
        )
        
    distance_matrix = 100 - similarity_matrix.clone()

    # Ignore self-pairing
    similarity_matrix.fill_diagonal_(-100)
    similarity_sum = similarity_matrix.sum(dim=1)

    # Find the most common frame
    most_common_frame_index = torch.argmax(similarity_sum).item()

    # Conduct FPS sampling starting from the most common frame
    fps_idx = farthest_point_sampling(
        distance_matrix, query_frame_num, most_common_frame_index
    )

    return fps_idx


def farthest_point_sampling(
    distance_matrix, num_samples, most_common_frame_index=0
):
    """
    Farthest point sampling algorithm to select diverse frames.
    
    Args:
        distance_matrix: Matrix of distances between frames
        num_samples: Number of frames to select
        most_common_frame_index: Index of the first frame to select
        
    Returns:
        List of selected frame indices
    """
    distance_matrix = distance_matrix.clamp(min=0)
    N = distance_matrix.size(0)

    # Initialize with the most common frame
    selected_indices = [most_common_frame_index]
    check_distances = distance_matrix[selected_indices]

    while len(selected_indices) < num_samples:
        # Find the farthest point from the current set of selected points
        farthest_point = torch.argmax(check_distances)
        selected_indices.append(farthest_point.item())

        check_distances = distance_matrix[farthest_point]
        # Mark already selected points to avoid selecting them again
        check_distances[selected_indices] = 0

        # Break if all points have been selected
        if len(selected_indices) == N:
            break

    return selected_indices


def calculate_index_mappings(query_index, S, device=None):
    """
    Construct an order that switches [query_index] and [0]
    so that the content of query_index would be placed at [0].
    
    Args:
        query_index: Index to swap with 0
        S: Total number of elements
        device: Device to place the tensor on
        
    Returns:
        Tensor of indices with the swapped order
    """
    new_order = torch.arange(S)
    new_order[0] = query_index
    new_order[query_index] = 0
    if device is not None:
        new_order = new_order.to(device)
    return new_order


def switch_tensor_order(tensors, order, dim=1):
    """
    Reorder tensors along a specific dimension according to the given order.
    
    Args:
        tensors: List of tensors to reorder
        order: Tensor of indices specifying the new order
        dim: Dimension along which to reorder
        
    Returns:
        List of reordered tensors
    """
    return [
        torch.index_select(tensor, dim, order) if tensor is not None else None
        for tensor in tensors
    ]


def predict_track(model, images, query_points, dtype=torch.bfloat16, use_tf32_for_track=True, iters=4):
    """
    Predict tracks for query points across frames.
    
    Args:
        model: VGGT model
        images: Tensor of images of shape (S, 3, H, W)
        query_points: Query points to track
        dtype: Data type for computation
        use_tf32_for_track: Whether to use TF32 precision for tracking
        iters: Number of iterations for tracking
        
    Returns:
        Predicted tracks, visibility scores, and confidence scores
    """
    with torch.no_grad():
        with torch.cuda.amp.autocast(dtype=dtype):
            images = images[None]  # add batch dimension
            aggregated_tokens_list, ps_idx = model.aggregator(images)
            
            if not use_tf32_for_track:
                track_list, vis_score, conf_score = model.track_head(
                    aggregated_tokens_list, images, ps_idx, query_points=query_points, iters=iters
                )

        if use_tf32_for_track:
            with torch.cuda.amp.autocast(enabled=False):
                track_list, vis_score, conf_score = model.track_head(
                    aggregated_tokens_list, images, ps_idx, query_points=query_points, iters=iters
                )
        
    pred_track = track_list[-1]
    
    return pred_track.squeeze(0), vis_score.squeeze(0), conf_score.squeeze(0)
    

def initialize_feature_extractors(max_query_num, det_thres, extractor_method="aliked", device="cuda"):
    """
    Initialize feature extractors that can be reused based on a method string.
    
    Args:
        max_query_num: Maximum number of keypoints to extract
        det_thres: Detection threshold for keypoint extraction
        extractor_method: String specifying which extractors to use (e.g., "aliked", "sp+sift", "aliked+sp+sift")
        device: Device to run extraction on
        
    Returns:
        Dictionary of initialized extractors
    """
    extractors = {}
    methods = extractor_method.lower().split('+')
    active_extractors = len(methods)
    
    for method in methods:
        method = method.strip()
        if method == "aliked":
            aliked_max_points = max_query_num // active_extractors
            aliked_extractor = ALIKED(max_num_keypoints=aliked_max_points, detection_threshold=det_thres)
            extractors['aliked'] = aliked_extractor.to(device).eval()
        elif method == "sp":
            sp_max_points = max_query_num // active_extractors
            sp_extractor = SuperPoint(max_num_keypoints=sp_max_points, detection_threshold=det_thres)
            extractors['sp'] = sp_extractor.to(device).eval()
        elif method == "sift":
            sift_max_points = max_query_num // active_extractors
            sift_extractor = SIFT(max_num_keypoints=sift_max_points)
            extractors['sift'] = sift_extractor.to(device).eval()
        else:
            print(f"Warning: Unknown feature extractor '{method}', ignoring.")
            
    if not extractors:
        print(f"Warning: No valid extractors found in '{extractor_method}'. Using ALIKED by default.")
        aliked_extractor = ALIKED(max_num_keypoints=max_query_num, detection_threshold=det_thres)
        extractors['aliked'] = aliked_extractor.to(device).eval()
            
    return extractors


def extract_keypoints(query_image, extractors):
    """
    Extract keypoints using pre-initialized feature extractors.
    
    Args:
        query_image: Input image tensor (3xHxW, range [0, 1])
        extractors: Dictionary of initialized extractors
        
    Returns:
        Tensor of keypoint coordinates (1xNx2)
    """
    query_points_round = None
    
    with torch.no_grad():
        for extractor_name, extractor in extractors.items():
            query_points_data = extractor.extract(query_image)
            extractor_points = query_points_data["keypoints"].round()
            
            if query_points_round is not None:
                query_points_round = torch.cat([query_points_round, extractor_points], dim=1)
            else:
                query_points_round = extractor_points

    return query_points_round


def run_vggt_with_ba(model, images, image_names=None, dtype=torch.bfloat16, 
                     max_query_num=2048, det_thres=0.005, query_frame_num=3,
                     extractor_method="aliked+sp+sift",
                     max_reproj_error=4,
                     shared_camera=True,
                     ):
    """
    Run VGGT with bundle adjustment for pose estimation.
    
    Args:
        model: VGGT model
        images: Tensor of images of shape (S, 3, H, W)
        image_names: Optional list of image names
        dtype: Data type for computation
        
    Returns:
        Predicted extrinsic camera parameters
    
    TODO:
        - [ ] Use VGGT's vit instead of dinov2 for rank generation
    """
    device = images.device
    frame_num = images.shape[0]

    # TODO: use vggt's vit instead of dinov2
    # Select representative frames for feature extraction
    query_frame_indexes = generate_rank_by_dino(
        images, query_frame_num, image_size=518, 
        model_name="dinov2_vitb14_reg", device=device,
        spatial_similarity=False
    )
    
    # Add the first image to the front if not already present
    if 0 in query_frame_indexes:
        query_frame_indexes.remove(0)
    query_frame_indexes = [0, *query_frame_indexes]

    # Get initial pose and depth predictions

    with torch.no_grad(), torch.cuda.amp.autocast(enabled=False, dtype=torch.bfloat16):
        aggregated_tokens_list, patch_start_idx = model.aggregator(images, intermediate_layer_idx=model.cfg.intermediate_layer_idx)
    with torch.cuda.amp.autocast(enabled=False):
        fp32_tokens = [token.float() for token in aggregated_tokens_list]
        pred_all_pose_enc = model.camera_head(fp32_tokens)[-1]
        pred_all_extrinsic, pred_all_intrinsic = pose_encoding_to_extri_intri(pred_all_pose_enc, images.shape[-2:])
        pred_extrinsic = pred_all_extrinsic[0]
        pred_intrinsic = pred_all_intrinsic[0]
        depth_map, depth_conf = model.depth_head(aggregated_tokens_list, images=images, patch_start_idx=patch_start_idx)

        world_points = unproject_depth_map_to_point_map(depth_map, pred_extrinsic, pred_intrinsic)
        world_points = torch.from_numpy(world_points).to(device)
        world_points_conf = depth_conf.to(device)
        
    torch.cuda.empty_cache()

    # Lists to store predictions
    pred_tracks = []
    pred_vis_scores = []
    pred_conf_scores = []
    pred_world_points = []
    pred_world_points_conf = []
    
    # Initialize feature extractors
    extractors = initialize_feature_extractors(max_query_num, det_thres, extractor_method, device)

    # Process each query frame
    for query_index in query_frame_indexes:
        query_image = images[query_index]
        query_points_round = extract_keypoints(query_image, extractors)

        # Reorder images to put query image first
        reorder_index = calculate_index_mappings(query_index, frame_num, device=device)
        reorder_images = switch_tensor_order([images], reorder_index, dim=0)[0]
        
        # Track points across frames
        reorder_tracks, reorder_vis_score, reorder_conf_score = predict_track(
            model, reorder_images, query_points_round, dtype=dtype, use_tf32_for_track=True, iters=4
        )
        
        # Restore original order
        pred_track, pred_vis, pred_score = switch_tensor_order(
            [reorder_tracks, reorder_vis_score, reorder_conf_score], reorder_index, dim=0
        )

        pred_tracks.append(pred_track)
        pred_vis_scores.append(pred_vis)
        pred_conf_scores.append(pred_score)

        # Get corresponding 3D points
        query_points_round_long = query_points_round.squeeze(0).long()
        query_world_points = world_points[query_index][
            query_points_round_long[:, 1], query_points_round_long[:, 0]
        ]
        query_world_points_conf = world_points_conf[query_index][
            query_points_round_long[:, 1], query_points_round_long[:, 0]
        ]
        
        pred_world_points.append(query_world_points)
        pred_world_points_conf.append(query_world_points_conf)
        
    # Concatenate prediction lists
    pred_tracks = torch.cat(pred_tracks, dim=1)
    pred_vis_scores = torch.cat(pred_vis_scores, dim=1)
    pred_conf_scores = torch.cat(pred_conf_scores, dim=1)
    pred_world_points = torch.cat(pred_world_points, dim=0)
    pred_world_points_conf = torch.cat(pred_world_points_conf, dim=0)
    
    # Filter points by confidence
    filtered_flag = pred_world_points_conf > 1.5
    
    if filtered_flag.sum() > 1024:
        # well if the number of points is too small, we will not filter 
        pred_world_points = pred_world_points[filtered_flag]
        pred_world_points_conf = pred_world_points_conf[filtered_flag]
        
        pred_tracks = pred_tracks[:, filtered_flag]
        pred_vis_scores = pred_vis_scores[:, filtered_flag]
        pred_conf_scores = pred_conf_scores[:, filtered_flag]
    
    torch.cuda.empty_cache()

    # Bundle adjustment parameters
    S, _, H, W = images.shape
    image_size = torch.tensor([W, H], dtype=pred_tracks.dtype, device=device)

    # Run bundle adjustment
    reconstruction = batch_matrix_to_pycolmap(
        pred_world_points,
        pred_extrinsic,
        pred_intrinsic,
        pred_tracks,
        image_size,
        max_reproj_error=max_reproj_error,
        shared_camera=shared_camera
    )
    
    ba_options = pycolmap.BundleAdjustmentOptions()
    pycolmap.bundle_adjustment(reconstruction, ba_options)
    _, updated_extrinsic, _, _ = pycolmap_to_batch_matrix(
        reconstruction, device=device, camera_type="SIMPLE_PINHOLE"
    )
    
    return updated_extrinsic