File size: 14,957 Bytes
2568013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
import pycolmap
import numpy as np
import torch
import torch.nn.functional as F
from src.model.encoder.vggt.utils.pose_enc import pose_encoding_to_extri_intri
from src.model.encoder.vggt.utils.geometry import closed_form_inverse_se3, unproject_depth_map_to_point_map
from lightglue import ALIKED, SuperPoint, SIFT
from src.utils.tensor_to_pycolmap import batch_matrix_to_pycolmap, pycolmap_to_batch_matrix
_RESNET_MEAN = [0.485, 0.456, 0.406]
_RESNET_STD = [0.229, 0.224, 0.225]
def generate_rank_by_dino(
images, query_frame_num, image_size=518, model_name="dinov2_vitb14_reg", device="cuda", spatial_similarity=True
):
"""
Generate a ranking of frames using DINO ViT features.
Args:
images: Tensor of shape (S, 3, H, W) with values in range [0, 1]
query_frame_num: Number of frames to select
image_size: Size to resize images to before processing
model_name: Name of the DINO model to use
device: Device to run the model on
spatial_similarity: Whether to use spatial token similarity or CLS token similarity
Returns:
List of frame indices ranked by their representativeness
"""
dino_v2_model = torch.hub.load('facebookresearch/dinov2', model_name)
dino_v2_model.eval()
dino_v2_model = dino_v2_model.to(device)
resnet_mean = torch.tensor(_RESNET_MEAN, device=device).view(1, 3, 1, 1)
resnet_std = torch.tensor(_RESNET_STD, device=device).view(1, 3, 1, 1)
images_resnet_norm = (images - resnet_mean) / resnet_std
with torch.no_grad():
frame_feat = dino_v2_model(images_resnet_norm, is_training=True)
if spatial_similarity:
frame_feat = frame_feat["x_norm_patchtokens"]
frame_feat_norm = F.normalize(frame_feat, p=2, dim=1)
# Compute the similarity matrix
frame_feat_norm = frame_feat_norm.permute(1, 0, 2)
similarity_matrix = torch.bmm(
frame_feat_norm, frame_feat_norm.transpose(-1, -2)
)
similarity_matrix = similarity_matrix.mean(dim=0)
else:
frame_feat = frame_feat["x_norm_clstoken"]
frame_feat_norm = F.normalize(frame_feat, p=2, dim=1)
similarity_matrix = torch.mm(
frame_feat_norm, frame_feat_norm.transpose(-1, -2)
)
distance_matrix = 100 - similarity_matrix.clone()
# Ignore self-pairing
similarity_matrix.fill_diagonal_(-100)
similarity_sum = similarity_matrix.sum(dim=1)
# Find the most common frame
most_common_frame_index = torch.argmax(similarity_sum).item()
# Conduct FPS sampling starting from the most common frame
fps_idx = farthest_point_sampling(
distance_matrix, query_frame_num, most_common_frame_index
)
return fps_idx
def farthest_point_sampling(
distance_matrix, num_samples, most_common_frame_index=0
):
"""
Farthest point sampling algorithm to select diverse frames.
Args:
distance_matrix: Matrix of distances between frames
num_samples: Number of frames to select
most_common_frame_index: Index of the first frame to select
Returns:
List of selected frame indices
"""
distance_matrix = distance_matrix.clamp(min=0)
N = distance_matrix.size(0)
# Initialize with the most common frame
selected_indices = [most_common_frame_index]
check_distances = distance_matrix[selected_indices]
while len(selected_indices) < num_samples:
# Find the farthest point from the current set of selected points
farthest_point = torch.argmax(check_distances)
selected_indices.append(farthest_point.item())
check_distances = distance_matrix[farthest_point]
# Mark already selected points to avoid selecting them again
check_distances[selected_indices] = 0
# Break if all points have been selected
if len(selected_indices) == N:
break
return selected_indices
def calculate_index_mappings(query_index, S, device=None):
"""
Construct an order that switches [query_index] and [0]
so that the content of query_index would be placed at [0].
Args:
query_index: Index to swap with 0
S: Total number of elements
device: Device to place the tensor on
Returns:
Tensor of indices with the swapped order
"""
new_order = torch.arange(S)
new_order[0] = query_index
new_order[query_index] = 0
if device is not None:
new_order = new_order.to(device)
return new_order
def switch_tensor_order(tensors, order, dim=1):
"""
Reorder tensors along a specific dimension according to the given order.
Args:
tensors: List of tensors to reorder
order: Tensor of indices specifying the new order
dim: Dimension along which to reorder
Returns:
List of reordered tensors
"""
return [
torch.index_select(tensor, dim, order) if tensor is not None else None
for tensor in tensors
]
def predict_track(model, images, query_points, dtype=torch.bfloat16, use_tf32_for_track=True, iters=4):
"""
Predict tracks for query points across frames.
Args:
model: VGGT model
images: Tensor of images of shape (S, 3, H, W)
query_points: Query points to track
dtype: Data type for computation
use_tf32_for_track: Whether to use TF32 precision for tracking
iters: Number of iterations for tracking
Returns:
Predicted tracks, visibility scores, and confidence scores
"""
with torch.no_grad():
with torch.cuda.amp.autocast(dtype=dtype):
images = images[None] # add batch dimension
aggregated_tokens_list, ps_idx = model.aggregator(images)
if not use_tf32_for_track:
track_list, vis_score, conf_score = model.track_head(
aggregated_tokens_list, images, ps_idx, query_points=query_points, iters=iters
)
if use_tf32_for_track:
with torch.cuda.amp.autocast(enabled=False):
track_list, vis_score, conf_score = model.track_head(
aggregated_tokens_list, images, ps_idx, query_points=query_points, iters=iters
)
pred_track = track_list[-1]
return pred_track.squeeze(0), vis_score.squeeze(0), conf_score.squeeze(0)
def initialize_feature_extractors(max_query_num, det_thres, extractor_method="aliked", device="cuda"):
"""
Initialize feature extractors that can be reused based on a method string.
Args:
max_query_num: Maximum number of keypoints to extract
det_thres: Detection threshold for keypoint extraction
extractor_method: String specifying which extractors to use (e.g., "aliked", "sp+sift", "aliked+sp+sift")
device: Device to run extraction on
Returns:
Dictionary of initialized extractors
"""
extractors = {}
methods = extractor_method.lower().split('+')
active_extractors = len(methods)
for method in methods:
method = method.strip()
if method == "aliked":
aliked_max_points = max_query_num // active_extractors
aliked_extractor = ALIKED(max_num_keypoints=aliked_max_points, detection_threshold=det_thres)
extractors['aliked'] = aliked_extractor.to(device).eval()
elif method == "sp":
sp_max_points = max_query_num // active_extractors
sp_extractor = SuperPoint(max_num_keypoints=sp_max_points, detection_threshold=det_thres)
extractors['sp'] = sp_extractor.to(device).eval()
elif method == "sift":
sift_max_points = max_query_num // active_extractors
sift_extractor = SIFT(max_num_keypoints=sift_max_points)
extractors['sift'] = sift_extractor.to(device).eval()
else:
print(f"Warning: Unknown feature extractor '{method}', ignoring.")
if not extractors:
print(f"Warning: No valid extractors found in '{extractor_method}'. Using ALIKED by default.")
aliked_extractor = ALIKED(max_num_keypoints=max_query_num, detection_threshold=det_thres)
extractors['aliked'] = aliked_extractor.to(device).eval()
return extractors
def extract_keypoints(query_image, extractors):
"""
Extract keypoints using pre-initialized feature extractors.
Args:
query_image: Input image tensor (3xHxW, range [0, 1])
extractors: Dictionary of initialized extractors
Returns:
Tensor of keypoint coordinates (1xNx2)
"""
query_points_round = None
with torch.no_grad():
for extractor_name, extractor in extractors.items():
query_points_data = extractor.extract(query_image)
extractor_points = query_points_data["keypoints"].round()
if query_points_round is not None:
query_points_round = torch.cat([query_points_round, extractor_points], dim=1)
else:
query_points_round = extractor_points
return query_points_round
def run_vggt_with_ba(model, images, image_names=None, dtype=torch.bfloat16,
max_query_num=2048, det_thres=0.005, query_frame_num=3,
extractor_method="aliked+sp+sift",
max_reproj_error=4,
shared_camera=True,
):
"""
Run VGGT with bundle adjustment for pose estimation.
Args:
model: VGGT model
images: Tensor of images of shape (S, 3, H, W)
image_names: Optional list of image names
dtype: Data type for computation
Returns:
Predicted extrinsic camera parameters
TODO:
- [ ] Use VGGT's vit instead of dinov2 for rank generation
"""
device = images.device
frame_num = images.shape[0]
# TODO: use vggt's vit instead of dinov2
# Select representative frames for feature extraction
query_frame_indexes = generate_rank_by_dino(
images, query_frame_num, image_size=518,
model_name="dinov2_vitb14_reg", device=device,
spatial_similarity=False
)
# Add the first image to the front if not already present
if 0 in query_frame_indexes:
query_frame_indexes.remove(0)
query_frame_indexes = [0, *query_frame_indexes]
# Get initial pose and depth predictions
with torch.no_grad(), torch.cuda.amp.autocast(enabled=False, dtype=torch.bfloat16):
aggregated_tokens_list, patch_start_idx = model.aggregator(images, intermediate_layer_idx=model.cfg.intermediate_layer_idx)
with torch.cuda.amp.autocast(enabled=False):
fp32_tokens = [token.float() for token in aggregated_tokens_list]
pred_all_pose_enc = model.camera_head(fp32_tokens)[-1]
pred_all_extrinsic, pred_all_intrinsic = pose_encoding_to_extri_intri(pred_all_pose_enc, images.shape[-2:])
pred_extrinsic = pred_all_extrinsic[0]
pred_intrinsic = pred_all_intrinsic[0]
depth_map, depth_conf = model.depth_head(aggregated_tokens_list, images=images, patch_start_idx=patch_start_idx)
world_points = unproject_depth_map_to_point_map(depth_map, pred_extrinsic, pred_intrinsic)
world_points = torch.from_numpy(world_points).to(device)
world_points_conf = depth_conf.to(device)
torch.cuda.empty_cache()
# Lists to store predictions
pred_tracks = []
pred_vis_scores = []
pred_conf_scores = []
pred_world_points = []
pred_world_points_conf = []
# Initialize feature extractors
extractors = initialize_feature_extractors(max_query_num, det_thres, extractor_method, device)
# Process each query frame
for query_index in query_frame_indexes:
query_image = images[query_index]
query_points_round = extract_keypoints(query_image, extractors)
# Reorder images to put query image first
reorder_index = calculate_index_mappings(query_index, frame_num, device=device)
reorder_images = switch_tensor_order([images], reorder_index, dim=0)[0]
# Track points across frames
reorder_tracks, reorder_vis_score, reorder_conf_score = predict_track(
model, reorder_images, query_points_round, dtype=dtype, use_tf32_for_track=True, iters=4
)
# Restore original order
pred_track, pred_vis, pred_score = switch_tensor_order(
[reorder_tracks, reorder_vis_score, reorder_conf_score], reorder_index, dim=0
)
pred_tracks.append(pred_track)
pred_vis_scores.append(pred_vis)
pred_conf_scores.append(pred_score)
# Get corresponding 3D points
query_points_round_long = query_points_round.squeeze(0).long()
query_world_points = world_points[query_index][
query_points_round_long[:, 1], query_points_round_long[:, 0]
]
query_world_points_conf = world_points_conf[query_index][
query_points_round_long[:, 1], query_points_round_long[:, 0]
]
pred_world_points.append(query_world_points)
pred_world_points_conf.append(query_world_points_conf)
# Concatenate prediction lists
pred_tracks = torch.cat(pred_tracks, dim=1)
pred_vis_scores = torch.cat(pred_vis_scores, dim=1)
pred_conf_scores = torch.cat(pred_conf_scores, dim=1)
pred_world_points = torch.cat(pred_world_points, dim=0)
pred_world_points_conf = torch.cat(pred_world_points_conf, dim=0)
# Filter points by confidence
filtered_flag = pred_world_points_conf > 1.5
if filtered_flag.sum() > 1024:
# well if the number of points is too small, we will not filter
pred_world_points = pred_world_points[filtered_flag]
pred_world_points_conf = pred_world_points_conf[filtered_flag]
pred_tracks = pred_tracks[:, filtered_flag]
pred_vis_scores = pred_vis_scores[:, filtered_flag]
pred_conf_scores = pred_conf_scores[:, filtered_flag]
torch.cuda.empty_cache()
# Bundle adjustment parameters
S, _, H, W = images.shape
image_size = torch.tensor([W, H], dtype=pred_tracks.dtype, device=device)
# Run bundle adjustment
reconstruction = batch_matrix_to_pycolmap(
pred_world_points,
pred_extrinsic,
pred_intrinsic,
pred_tracks,
image_size,
max_reproj_error=max_reproj_error,
shared_camera=shared_camera
)
ba_options = pycolmap.BundleAdjustmentOptions()
pycolmap.bundle_adjustment(reconstruction, ba_options)
_, updated_extrinsic, _, _ = pycolmap_to_batch_matrix(
reconstruction, device=device, camera_type="SIMPLE_PINHOLE"
)
return updated_extrinsic
|