File size: 7,162 Bytes
2568013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import torch
import numpy as np
from src.model.encoder.vggt.utils.rotation import mat_to_quat
from src.model.encoder.vggt.utils.geometry import closed_form_inverse_se3, unproject_depth_map_to_point_map


def convert_pt3d_RT_to_opencv(Rot, Trans):
    """
    Convert Point3D extrinsic matrices to OpenCV convention.
    
    Args:
        Rot: 3D rotation matrix in Point3D format
        Trans: 3D translation vector in Point3D format
        
    Returns:
        extri_opencv: 3x4 extrinsic matrix in OpenCV format
    """
    rot_pt3d = np.array(Rot)
    trans_pt3d = np.array(Trans)

    trans_pt3d[:2] *= -1
    rot_pt3d[:, :2] *= -1
    rot_pt3d = rot_pt3d.transpose(1, 0)
    extri_opencv = np.hstack((rot_pt3d, trans_pt3d[:, None]))
    return extri_opencv


def build_pair_index(N, B=1):
    """
    Build indices for all possible pairs of frames.
    
    Args:
        N: Number of frames
        B: Batch size
        
    Returns:
        i1, i2: Indices for all possible pairs
    """
    i1_, i2_ = torch.combinations(torch.arange(N), 2, with_replacement=False).unbind(-1)
    i1, i2 = [(i[None] + torch.arange(B)[:, None] * N).reshape(-1) for i in [i1_, i2_]]
    return i1, i2


def rotation_angle(rot_gt, rot_pred, batch_size=None, eps=1e-15):
    """
    Calculate rotation angle error between ground truth and predicted rotations.
    
    Args:
        rot_gt: Ground truth rotation matrices
        rot_pred: Predicted rotation matrices
        batch_size: Batch size for reshaping the result
        eps: Small value to avoid numerical issues
        
    Returns:
        Rotation angle error in degrees
    """
    q_pred = mat_to_quat(rot_pred)
    q_gt = mat_to_quat(rot_gt)

    loss_q = (1 - (q_pred * q_gt).sum(dim=1) ** 2).clamp(min=eps)
    err_q = torch.arccos(1 - 2 * loss_q)

    rel_rangle_deg = err_q * 180 / np.pi

    if batch_size is not None:
        rel_rangle_deg = rel_rangle_deg.reshape(batch_size, -1)

    return rel_rangle_deg


def translation_angle(tvec_gt, tvec_pred, batch_size=None, ambiguity=True):
    """
    Calculate translation angle error between ground truth and predicted translations.
    
    Args:
        tvec_gt: Ground truth translation vectors
        tvec_pred: Predicted translation vectors
        batch_size: Batch size for reshaping the result
        ambiguity: Whether to handle direction ambiguity
        
    Returns:
        Translation angle error in degrees
    """
    rel_tangle_deg = compare_translation_by_angle(tvec_gt, tvec_pred)
    rel_tangle_deg = rel_tangle_deg * 180.0 / np.pi

    if ambiguity:
        rel_tangle_deg = torch.min(rel_tangle_deg, (180 - rel_tangle_deg).abs())

    if batch_size is not None:
        rel_tangle_deg = rel_tangle_deg.reshape(batch_size, -1)

    return rel_tangle_deg


def compare_translation_by_angle(t_gt, t, eps=1e-15, default_err=1e6):
    """
    Normalize the translation vectors and compute the angle between them.
    
    Args:
        t_gt: Ground truth translation vectors
        t: Predicted translation vectors
        eps: Small value to avoid division by zero
        default_err: Default error value for invalid cases
        
    Returns:
        Angular error between translation vectors in radians
    """
    t_norm = torch.norm(t, dim=1, keepdim=True)
    t = t / (t_norm + eps)

    t_gt_norm = torch.norm(t_gt, dim=1, keepdim=True)
    t_gt = t_gt / (t_gt_norm + eps)

    loss_t = torch.clamp_min(1.0 - torch.sum(t * t_gt, dim=1) ** 2, eps)
    err_t = torch.acos(torch.sqrt(1 - loss_t))

    err_t[torch.isnan(err_t) | torch.isinf(err_t)] = default_err
    return err_t


def calculate_auc(r_error, t_error, max_threshold=30, return_list=False):
    """
    Calculate the Area Under the Curve (AUC) for the given error arrays using PyTorch.

    Args:
        r_error: torch.Tensor representing R error values (Degree)
        t_error: torch.Tensor representing T error values (Degree)
        max_threshold: Maximum threshold value for binning the histogram
        return_list: Whether to return the normalized histogram as well
        
    Returns:
        AUC value, and optionally the normalized histogram
    """
    error_matrix = torch.stack((r_error, t_error), dim=1)
    max_errors, _ = torch.max(error_matrix, dim=1)
    histogram = torch.histc(
        max_errors, bins=max_threshold + 1, min=0, max=max_threshold
    )
    num_pairs = float(max_errors.size(0))
    normalized_histogram = histogram / num_pairs

    if return_list:
        return (
            torch.cumsum(normalized_histogram, dim=0).mean(),
            normalized_histogram,
        )
    return torch.cumsum(normalized_histogram, dim=0).mean()


def calculate_auc_np(r_error, t_error, max_threshold=30):
    """
    Calculate the Area Under the Curve (AUC) for the given error arrays using NumPy.

    Args:
        r_error: numpy array representing R error values (Degree)
        t_error: numpy array representing T error values (Degree)
        max_threshold: Maximum threshold value for binning the histogram
        
    Returns:
        AUC value and the normalized histogram
    """
    error_matrix = np.concatenate((r_error[:, None], t_error[:, None]), axis=1)
    max_errors = np.max(error_matrix, axis=1)
    bins = np.arange(max_threshold + 1)
    histogram, _ = np.histogram(max_errors, bins=bins)
    num_pairs = float(len(max_errors))
    normalized_histogram = histogram.astype(float) / num_pairs
    return np.mean(np.cumsum(normalized_histogram)), normalized_histogram


def se3_to_relative_pose_error(pred_se3, gt_se3, num_frames):
    """
    Compute rotation and translation errors between predicted and ground truth poses.
    
    Args:
        pred_se3: Predicted SE(3) transformations
        gt_se3: Ground truth SE(3) transformations
        num_frames: Number of frames
        
    Returns:
        Rotation and translation angle errors in degrees
    """
    pair_idx_i1, pair_idx_i2 = build_pair_index(num_frames)

    # Compute relative camera poses between pairs
    # We use closed_form_inverse to avoid potential numerical loss by torch.inverse()
    relative_pose_gt = closed_form_inverse_se3(gt_se3[pair_idx_i1]).bmm(
        gt_se3[pair_idx_i2]
    )
    relative_pose_pred = closed_form_inverse_se3(pred_se3[pair_idx_i1]).bmm(
        pred_se3[pair_idx_i2]
    )
    
    # Compute the difference in rotation and translation
    rel_rangle_deg = rotation_angle(
        relative_pose_gt[:, :3, :3], relative_pose_pred[:, :3, :3]
    )
    rel_tangle_deg = translation_angle(
        relative_pose_gt[:, :3, 3], relative_pose_pred[:, :3, 3]
    )

    return rel_rangle_deg, rel_tangle_deg


def align_to_first_camera(camera_poses):
    """
    Align all camera poses to the first camera's coordinate frame.
    
    Args:
        camera_poses: Tensor of shape (N, 4, 4) containing camera poses as SE3 transformations
        
    Returns:
        Tensor of shape (N, 4, 4) containing aligned camera poses
    """
    first_cam_extrinsic_inv = closed_form_inverse_se3(camera_poses[0][None])
    aligned_poses = torch.matmul(camera_poses, first_cam_extrinsic_inv)
    return aligned_poses