File size: 11,040 Bytes
2568013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import os
import enum
import types
from typing import List, Mapping, Optional, Text, Tuple, Union
import copy
from PIL import Image
# import mediapy as media
from matplotlib import cm
from tqdm import tqdm
import torch
def normalize(x: np.ndarray) -> np.ndarray:
"""Normalization helper function."""
return x / np.linalg.norm(x)
def pad_poses(p: np.ndarray) -> np.ndarray:
"""Pad [..., 3, 4] pose matrices with a homogeneous bottom row [0,0,0,1]."""
bottom = np.broadcast_to([0, 0, 0, 1.], p[..., :1, :4].shape)
return np.concatenate([p[..., :3, :4], bottom], axis=-2)
def unpad_poses(p: np.ndarray) -> np.ndarray:
"""Remove the homogeneous bottom row from [..., 4, 4] pose matrices."""
return p[..., :3, :4]
def recenter_poses(poses: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""Recenter poses around the origin."""
cam2world = average_pose(poses)
transform = np.linalg.inv(pad_poses(cam2world))
poses = transform @ pad_poses(poses)
return unpad_poses(poses), transform
def average_pose(poses: np.ndarray) -> np.ndarray:
"""New pose using average position, z-axis, and up vector of input poses."""
position = poses[:, :3, 3].mean(0)
z_axis = poses[:, :3, 2].mean(0)
up = poses[:, :3, 1].mean(0)
cam2world = viewmatrix(z_axis, up, position)
return cam2world
def viewmatrix(lookdir: np.ndarray, up: np.ndarray,
position: np.ndarray) -> np.ndarray:
"""Construct lookat view matrix."""
vec2 = normalize(lookdir)
vec0 = normalize(np.cross(up, vec2))
vec1 = normalize(np.cross(vec2, vec0))
m = np.stack([vec0, vec1, vec2, position], axis=1)
return m
def focus_point_fn(poses: np.ndarray) -> np.ndarray:
"""Calculate nearest point to all focal axes in poses."""
directions, origins = poses[:, :3, 2:3], poses[:, :3, 3:4]
m = np.eye(3) - directions * np.transpose(directions, [0, 2, 1])
mt_m = np.transpose(m, [0, 2, 1]) @ m
focus_pt = np.linalg.inv(mt_m.mean(0)) @ (mt_m @ origins).mean(0)[:, 0]
return focus_pt
def transform_poses_pca(poses: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""Transforms poses so principal components lie on XYZ axes.
Args:
poses: a (N, 3, 4) array containing the cameras' camera to world transforms.
Returns:
A tuple (poses, transform), with the transformed poses and the applied
camera_to_world transforms.
"""
t = poses[:, :3, 3]
t_mean = t.mean(axis=0)
t = t - t_mean
eigval, eigvec = np.linalg.eig(t.T @ t)
# Sort eigenvectors in order of largest to smallest eigenvalue.
inds = np.argsort(eigval)[::-1]
eigvec = eigvec[:, inds]
rot = eigvec.T
if np.linalg.det(rot) < 0:
rot = np.diag(np.array([1, 1, -1])) @ rot
transform = np.concatenate([rot, rot @ -t_mean[:, None]], -1)
poses_recentered = unpad_poses(transform @ pad_poses(poses))
transform = np.concatenate([transform, np.eye(4)[3:]], axis=0)
# Flip coordinate system if z component of y-axis is negative
if poses_recentered.mean(axis=0)[2, 1] < 0:
poses_recentered = np.diag(np.array([1, -1, -1])) @ poses_recentered
transform = np.diag(np.array([1, -1, -1, 1])) @ transform
return poses_recentered, transform
# points = np.random.rand(3,100)
# points_h = np.concatenate((points,np.ones_like(points[:1])), axis=0)
# (poses_recentered @ points_h)[0]
# (transform @ pad_poses(poses) @ points_h)[0,:3]
# import pdb; pdb.set_trace()
# # Just make sure it's it in the [-1, 1]^3 cube
# scale_factor = 1. / np.max(np.abs(poses_recentered[:, :3, 3]))
# poses_recentered[:, :3, 3] *= scale_factor
# transform = np.diag(np.array([scale_factor] * 3 + [1])) @ transform
# return poses_recentered, transform
def generate_ellipse_path(poses: np.ndarray,
n_frames: int = 120,
const_speed: bool = True,
z_variation: float = 0.,
z_phase: float = 0.) -> np.ndarray:
"""Generate an elliptical render path based on the given poses."""
# Calculate the focal point for the path (cameras point toward this).
center = focus_point_fn(poses)
# Path height sits at z=0 (in middle of zero-mean capture pattern).
offset = np.array([center[0], center[1], 0])
# Calculate scaling for ellipse axes based on input camera positions.
sc = np.percentile(np.abs(poses[:, :3, 3] - offset), 90, axis=0)
# Use ellipse that is symmetric about the focal point in xy.
low = -sc + offset
high = sc + offset
# Optional height variation need not be symmetric
z_low = np.percentile((poses[:, :3, 3]), 10, axis=0)
z_high = np.percentile((poses[:, :3, 3]), 90, axis=0)
def get_positions(theta):
# Interpolate between bounds with trig functions to get ellipse in x-y.
# Optionally also interpolate in z to change camera height along path.
return np.stack([
low[0] + (high - low)[0] * (np.cos(theta) * .5 + .5),
low[1] + (high - low)[1] * (np.sin(theta) * .5 + .5),
z_variation * (z_low[2] + (z_high - z_low)[2] *
(np.cos(theta + 2 * np.pi * z_phase) * .5 + .5)),
], -1)
theta = np.linspace(0, 2. * np.pi, n_frames + 1, endpoint=True)
positions = get_positions(theta)
#if const_speed:
# # Resample theta angles so that the velocity is closer to constant.
# lengths = np.linalg.norm(positions[1:] - positions[:-1], axis=-1)
# theta = stepfun.sample(None, theta, np.log(lengths), n_frames + 1)
# positions = get_positions(theta)
# Throw away duplicated last position.
positions = positions[:-1]
# Set path's up vector to axis closest to average of input pose up vectors.
avg_up = poses[:, :3, 1].mean(0)
avg_up = avg_up / np.linalg.norm(avg_up)
ind_up = np.argmax(np.abs(avg_up))
up = np.eye(3)[ind_up] * np.sign(avg_up[ind_up])
return np.stack([viewmatrix(p - center, up, p) for p in positions])
def generate_path(viewpoint_cameras, n_frames=480):
# c2ws = np.array([np.linalg.inv(np.asarray((cam.world_view_transform.T).cpu().numpy())) for cam in viewpoint_cameras])
c2ws = viewpoint_cameras.cpu().numpy()
pose = c2ws[:,:3,:] @ np.diag([1, -1, -1, 1])
pose_recenter, colmap_to_world_transform = transform_poses_pca(pose)
# generate new poses
new_poses = generate_ellipse_path(poses=pose_recenter, n_frames=n_frames)
# warp back to orignal scale
new_poses = np.linalg.inv(colmap_to_world_transform) @ pad_poses(new_poses)
return new_poses
# traj = []
# for c2w in new_poses:
# c2w = c2w @ np.diag([1, -1, -1, 1])
# cam = copy.deepcopy(viewpoint_cameras[0])
# cam.image_height = int(cam.image_height / 2) * 2
# cam.image_width = int(cam.image_width / 2) * 2
# cam.world_view_transform = torch.from_numpy(np.linalg.inv(c2w).T).float().cuda()
# cam.full_proj_transform = (cam.world_view_transform.unsqueeze(0).bmm(cam.projection_matrix.unsqueeze(0))).squeeze(0)
# cam.camera_center = cam.world_view_transform.inverse()[3, :3]
# traj.append(cam)
# return traj
def load_img(pth: str) -> np.ndarray:
"""Load an image and cast to float32."""
with open(pth, 'rb') as f:
image = np.array(Image.open(f), dtype=np.float32)
return image
def create_videos(base_dir, input_dir, out_name, num_frames=480):
"""Creates videos out of the images saved to disk."""
# Last two parts of checkpoint path are experiment name and scene name.
video_prefix = f'{out_name}'
zpad = max(5, len(str(num_frames - 1)))
idx_to_str = lambda idx: str(idx).zfill(zpad)
os.makedirs(base_dir, exist_ok=True)
render_dist_curve_fn = np.log
# Load one example frame to get image shape and depth range.
depth_file = os.path.join(input_dir, 'vis', f'depth_{idx_to_str(0)}.tiff')
depth_frame = load_img(depth_file)
shape = depth_frame.shape
p = 3
distance_limits = np.percentile(depth_frame.flatten(), [p, 100 - p])
lo, hi = [render_dist_curve_fn(x) for x in distance_limits]
print(f'Video shape is {shape[:2]}')
video_kwargs = {
'shape': shape[:2],
'codec': 'h264',
'fps': 60,
'crf': 18,
}
for k in ['depth', 'normal', 'color']:
video_file = os.path.join(base_dir, f'{video_prefix}_{k}.mp4')
input_format = 'gray' if k == 'alpha' else 'rgb'
file_ext = 'png' if k in ['color', 'normal'] else 'tiff'
idx = 0
if k == 'color':
file0 = os.path.join(input_dir, 'renders', f'{idx_to_str(0)}.{file_ext}')
else:
file0 = os.path.join(input_dir, 'vis', f'{k}_{idx_to_str(0)}.{file_ext}')
if not os.path.exists(file0):
print(f'Images missing for tag {k}')
continue
print(f'Making video {video_file}...')
with media.VideoWriter(
video_file, **video_kwargs, input_format=input_format) as writer:
for idx in tqdm(range(num_frames)):
# img_file = os.path.join(input_dir, f'{k}_{idx_to_str(idx)}.{file_ext}')
if k == 'color':
img_file = os.path.join(input_dir, 'renders', f'{idx_to_str(idx)}.{file_ext}')
else:
img_file = os.path.join(input_dir, 'vis', f'{k}_{idx_to_str(idx)}.{file_ext}')
if not os.path.exists(img_file):
ValueError(f'Image file {img_file} does not exist.')
img = load_img(img_file)
if k in ['color', 'normal']:
img = img / 255.
elif k.startswith('depth'):
img = render_dist_curve_fn(img)
img = np.clip((img - np.minimum(lo, hi)) / np.abs(hi - lo), 0, 1)
img = cm.get_cmap('turbo')(img)[..., :3]
frame = (np.clip(np.nan_to_num(img), 0., 1.) * 255.).astype(np.uint8)
writer.add_image(frame)
idx += 1
def save_img_u8(img, pth):
"""Save an image (probably RGB) in [0, 1] to disk as a uint8 PNG."""
with open(pth, 'wb') as f:
Image.fromarray(
(np.clip(np.nan_to_num(img), 0., 1.) * 255.).astype(np.uint8)).save(
f, 'PNG')
def save_img_f32(depthmap, pth):
"""Save an image (probably a depthmap) to disk as a float32 TIFF."""
with open(pth, 'wb') as f:
Image.fromarray(np.nan_to_num(depthmap).astype(np.float32)).save(f, 'TIFF') |