File size: 5,242 Bytes
2568013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from typing import Protocol, runtime_checkable

import cv2
import torch
from einops import repeat, pack
from jaxtyping import Float
from torch import Tensor

from .camera_trajectory.interpolation import interpolate_extrinsics, interpolate_intrinsics
from .camera_trajectory.wobble import generate_wobble, generate_wobble_transformation
from .layout import vcat
from ..dataset.types import BatchedExample
from ..misc.image_io import save_video
from ..misc.utils import vis_depth_map
from ..model.decoder import Decoder
from ..model.types import Gaussians


@runtime_checkable
class TrajectoryFn(Protocol):
    def __call__(
        self,
        t: Float[Tensor, " t"],
    ) -> tuple[
        Float[Tensor, "batch view 4 4"],  # extrinsics
        Float[Tensor, "batch view 3 3"],  # intrinsics
    ]:
        pass


def render_video_wobble(
        gaussians: Gaussians,
        decoder: Decoder,
        batch: BatchedExample,
        num_frames: int = 60,
        smooth: bool = True,
        loop_reverse: bool = True,
        add_depth: bool = False,
) -> Tensor:
    # Two views are needed to get the wobble radius,use the first and the last view
    _, v, _, _ = batch["context"]["extrinsics"].shape

    def trajectory_fn(t):
        origin_a = batch["context"]["extrinsics"][:, 0, :3, 3]
        origin_b = batch["context"]["extrinsics"][:, -1, :3, 3]
        delta = (origin_a - origin_b).norm(dim=-1)
        extrinsics = generate_wobble(
            batch["context"]["extrinsics"][:, 0],
            delta * 0.25,
            t,
        )
        intrinsics = repeat(
            batch["context"]["intrinsics"][:, 0],
            "b i j -> b v i j",
            v=t.shape[0],
        )
        return extrinsics, intrinsics

    return render_video_generic(gaussians, decoder, batch, trajectory_fn, num_frames, smooth, loop_reverse, add_depth)


def render_video_interpolation(
        gaussians: Gaussians,
        decoder: Decoder,
        batch: BatchedExample,
        num_frames: int = 60,
        smooth: bool = True,
        loop_reverse: bool = True,
        add_depth: bool = False,
) -> Tensor:
    _, v, _, _ = batch["context"]["extrinsics"].shape

    def trajectory_fn(t):
        extrinsics = interpolate_extrinsics(
            batch["context"]["extrinsics"][0, 0],
            batch["context"]["extrinsics"][0, -1],
            t,
        )
        intrinsics = interpolate_intrinsics(
            batch["context"]["intrinsics"][0, 0],
            batch["context"]["intrinsics"][0, -1],
            t,
        )
        return extrinsics[None], intrinsics[None]

    return render_video_generic(gaussians, decoder, batch, trajectory_fn, num_frames, smooth, loop_reverse, add_depth)


def render_video_interpolation_exaggerated(
        gaussians: Gaussians,
        decoder: Decoder,
        batch: BatchedExample,
        num_frames: int = 300,
        smooth: bool = False,
        loop_reverse: bool = False,
        add_depth: bool = False,
) -> Tensor:
    # Two views are needed to get the wobble radius.
    _, v, _, _ = batch["context"]["extrinsics"].shape

    def trajectory_fn(t):
        origin_a = batch["context"]["extrinsics"][:, 0, :3, 3]
        origin_b = batch["context"]["extrinsics"][:, -1, :3, 3]
        delta = (origin_a - origin_b).norm(dim=-1)
        tf = generate_wobble_transformation(
            delta * 0.5,
            t,
            5,
            scale_radius_with_t=False,
        )
        extrinsics = interpolate_extrinsics(
            batch["context"]["extrinsics"][0, 0],
            batch["context"]["extrinsics"][0, -1],
            t * 5 - 2,
        )
        intrinsics = interpolate_intrinsics(
            batch["context"]["intrinsics"][0, 0],
            batch["context"]["extrinsics"][0, -1],
            t * 5 - 2,
        )
        return extrinsics @ tf, intrinsics[None]

    return render_video_generic(gaussians, decoder, batch, trajectory_fn, num_frames, smooth, loop_reverse, add_depth)


def render_video_generic(
        gaussians: Gaussians,
        decoder: Decoder,
        batch: BatchedExample,
        trajectory_fn: TrajectoryFn,
        num_frames: int = 30,
        smooth: bool = True,
        loop_reverse: bool = True,
        add_depth: bool = False,
) -> Tensor:
    device = gaussians.means.device

    t = torch.linspace(0, 1, num_frames, dtype=torch.float32, device=device)
    if smooth:
        t = (torch.cos(torch.pi * (t + 1)) + 1) / 2

    extrinsics, intrinsics = trajectory_fn(t)

    _, _, _, h, w = batch["context"]["image"].shape

    near = repeat(batch["context"]["near"][:, 0], "b -> b v", v=num_frames)
    far = repeat(batch["context"]["far"][:, 0], "b -> b v", v=num_frames)
    output = decoder.forward(
        gaussians, extrinsics, intrinsics, near, far, (h, w), "depth"
    )
    images = [
        vcat(rgb, depth) if add_depth else rgb
        for rgb, depth in zip(output.color[0], vis_depth_map(output.depth[0]))
    ]

    video = torch.stack(images)
    # video = (video.clip(min=0, max=1) * 255).type(torch.uint8).cpu().numpy()
    if loop_reverse:
        # video = pack([video, video[::-1][1:-1]], "* c h w")[0]
        video = pack([video, video.flip(dims=(0,))[1:-1]], "* c h w")[0]

    return video