AnySplat / src /post_opt /exporter.py
alexnasa's picture
Upload 243 files
2568013 verified
raw
history blame
18.7 kB
import math
import struct
from io import BytesIO
from typing import Literal, Optional
import numpy as np
import torch
def sh2rgb(sh: torch.Tensor) -> torch.Tensor:
"""Convert Sphere Harmonics to RGB
Args:
sh (torch.Tensor): SH tensor
Returns:
torch.Tensor: RGB tensor
"""
C0 = 0.28209479177387814
return sh * C0 + 0.5
def part1by2_vec(x: torch.Tensor) -> torch.Tensor:
"""Interleave bits of x with 0s
Args:
x (torch.Tensor): Input tensor. Shape (N,)
Returns:
torch.Tensor: Output tensor. Shape (N,)
"""
x = x & 0x000003FF
x = (x ^ (x << 16)) & 0xFF0000FF
x = (x ^ (x << 8)) & 0x0300F00F
x = (x ^ (x << 4)) & 0x030C30C3
x = (x ^ (x << 2)) & 0x09249249
return x
def encode_morton3_vec(
x: torch.Tensor, y: torch.Tensor, z: torch.Tensor
) -> torch.Tensor:
"""Compute Morton codes for 3D coordinates
Args:
x (torch.Tensor): X coordinates. Shape (N,)
y (torch.Tensor): Y coordinates. Shape (N,)
z (torch.Tensor): Z coordinates. Shape (N,)
Returns:
torch.Tensor: Morton codes. Shape (N,)
"""
return (part1by2_vec(z) << 2) + (part1by2_vec(y) << 1) + part1by2_vec(x)
def sort_centers(centers: torch.Tensor, indices: torch.Tensor) -> torch.Tensor:
"""Sort centers based on Morton codes
Args:
centers (torch.Tensor): Centers. Shape (N, 3)
indices (torch.Tensor): Indices. Shape (N,)
Returns:
torch.Tensor: Sorted indices. Shape (N,)
"""
# Compute min and max values in a single operation
min_vals, _ = torch.min(centers, dim=0)
max_vals, _ = torch.max(centers, dim=0)
# Compute the scaling factors
lengths = max_vals - min_vals
lengths[lengths == 0] = 1 # Prevent division by zero
# Normalize and scale to 10-bit integer range (0-1024)
scaled_centers = ((centers - min_vals) / lengths * 1024).floor().to(torch.int32)
# Extract x, y, z coordinates
x, y, z = scaled_centers[:, 0], scaled_centers[:, 1], scaled_centers[:, 2]
# Compute Morton codes using vectorized operations
morton = encode_morton3_vec(x, y, z)
# Sort indices based on Morton codes
sorted_indices = indices[torch.argsort(morton).to(indices.device)]
return sorted_indices
def pack_unorm(value: torch.Tensor, bits: int) -> torch.Tensor:
"""Pack a floating point value into an unsigned integer with a given number of bits.
Args:
value (torch.Tensor): Floating point value to pack. Shape (N,)
bits (int): Number of bits to pack into.
Returns:
torch.Tensor: Packed value. Shape (N,)
"""
t = (1 << bits) - 1
packed = torch.clamp((value * t + 0.5).floor(), min=0, max=t)
# Convert to integer type
return packed.to(torch.int64)
def pack_111011(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor) -> torch.Tensor:
"""Pack three floating point values into a 32-bit integer with 11, 10, and 11 bits.
Args:
x (torch.Tensor): X component. Shape (N,)
y (torch.Tensor): Y component. Shape (N,)
z (torch.Tensor): Z component. Shape (N,)
Returns:
torch.Tensor: Packed values. Shape (N,)
"""
# Pack each component using pack_unorm
packed_x = pack_unorm(x, 11) << 21
packed_y = pack_unorm(y, 10) << 11
packed_z = pack_unorm(z, 11)
# Combine the packed values using bitwise OR
return packed_x | packed_y | packed_z
def pack_8888(
x: torch.Tensor, y: torch.Tensor, z: torch.Tensor, w: torch.Tensor
) -> torch.Tensor:
"""Pack four floating point values into a 32-bit integer with 8 bits each.
Args:
x (torch.Tensor): X component. Shape (N,)
y (torch.Tensor): Y component. Shape (N,)
z (torch.Tensor): Z component. Shape (N,)
w (torch.Tensor): W component. Shape (N,)
Returns:
torch.Tensor: Packed values. Shape (N,)
"""
# Pack each component using pack_unorm
packed_x = pack_unorm(x, 8) << 24
packed_y = pack_unorm(y, 8) << 16
packed_z = pack_unorm(z, 8) << 8
packed_w = pack_unorm(w, 8)
# Combine the packed values using bitwise OR
return packed_x | packed_y | packed_z | packed_w
def pack_rotation(q: torch.Tensor) -> torch.Tensor:
"""Pack a quaternion into a 32-bit integer.
Args:
q (torch.Tensor): Quaternions. Shape (N, 4)
Returns:
torch.Tensor: Packed values. Shape (N,)
"""
# Normalize each quaternion
norms = torch.linalg.norm(q, dim=-1, keepdim=True)
q = q / norms
# Find the largest component index for each quaternion
largest_components = torch.argmax(torch.abs(q), dim=-1)
# Flip quaternions where the largest component is negative
batch_indices = torch.arange(q.size(0), device=q.device)
largest_values = q[batch_indices, largest_components]
flip_mask = largest_values < 0
q[flip_mask] *= -1
# Precomputed indices for the components to pack (excluding largest)
precomputed_indices = torch.tensor(
[[1, 2, 3], [0, 2, 3], [0, 1, 3], [0, 1, 2]], dtype=torch.long, device=q.device
)
# Gather components to pack for each quaternion
pack_indices = precomputed_indices[largest_components]
components_to_pack = q[batch_indices[:, None], pack_indices]
# Scale and pack each component into 10-bit integers
norm = math.sqrt(2) * 0.5
scaled = components_to_pack * norm + 0.5
packed = pack_unorm(scaled, 10) # Assuming pack_unorm is vectorized
# Combine into the final 32-bit integer
largest_packed = largest_components.to(torch.int64) << 30
c0_packed = packed[:, 0] << 20
c1_packed = packed[:, 1] << 10
c2_packed = packed[:, 2]
result = largest_packed | c0_packed | c1_packed | c2_packed
return result
def splat2ply_bytes_compressed(
means: torch.Tensor,
scales: torch.Tensor,
quats: torch.Tensor,
opacities: torch.Tensor,
sh0: torch.Tensor,
shN: torch.Tensor,
chunk_max_size: int = 256,
opacity_threshold: float = 1 / 255,
) -> bytes:
"""Return the binary compressed Ply file. Used by Supersplat viewer.
Args:
means (torch.Tensor): Splat means. Shape (N, 3)
scales (torch.Tensor): Splat scales. Shape (N, 3)
quats (torch.Tensor): Splat quaternions. Shape (N, 4)
opacities (torch.Tensor): Splat opacities. Shape (N,)
sh0 (torch.Tensor): Spherical harmonics. Shape (N, 3)
shN (torch.Tensor): Spherical harmonics. Shape (N, K*3)
chunk_max_size (int): Maximum number of splats per chunk. Default: 256
opacity_threshold (float): Opacity threshold. Default: 1 / 255
Returns:
bytes: Binary compressed Ply file representing the model.
"""
# Filter the splats with too low opacity
mask = torch.sigmoid(opacities) > opacity_threshold
means = means[mask]
scales = scales[mask]
sh0_colors = sh2rgb(sh0)
sh0_colors = sh0_colors[mask]
shN = shN[mask]
quats = quats[mask]
opacities = opacities[mask]
num_splats = means.shape[0]
n_chunks = num_splats // chunk_max_size + (num_splats % chunk_max_size != 0)
indices = torch.arange(num_splats)
indices = sort_centers(means, indices)
float_properties = [
"min_x",
"min_y",
"min_z",
"max_x",
"max_y",
"max_z",
"min_scale_x",
"min_scale_y",
"min_scale_z",
"max_scale_x",
"max_scale_y",
"max_scale_z",
"min_r",
"min_g",
"min_b",
"max_r",
"max_g",
"max_b",
]
uint_properties = [
"packed_position",
"packed_rotation",
"packed_scale",
"packed_color",
]
buffer = BytesIO()
# Write PLY header
buffer.write(b"ply\n")
buffer.write(b"format binary_little_endian 1.0\n")
buffer.write(f"element chunk {n_chunks}\n".encode())
for prop in float_properties:
buffer.write(f"property float {prop}\n".encode())
buffer.write(f"element vertex {num_splats}\n".encode())
for prop in uint_properties:
buffer.write(f"property uint {prop}\n".encode())
buffer.write(f"element sh {num_splats}\n".encode())
for j in range(shN.shape[1]):
buffer.write(f"property uchar f_rest_{j}\n".encode())
buffer.write(b"end_header\n")
chunk_data = []
splat_data = []
sh_data = []
for chunk_idx in range(n_chunks):
chunk_end_idx = min((chunk_idx + 1) * chunk_max_size, num_splats)
chunk_start_idx = chunk_idx * chunk_max_size
splat_idxs = indices[chunk_start_idx:chunk_end_idx]
# Bounds
# Means
chunk_means = means[splat_idxs]
min_means = torch.min(chunk_means, dim=0).values
max_means = torch.max(chunk_means, dim=0).values
mean_bounds = torch.cat([min_means, max_means])
# Scales
chunk_scales = scales[splat_idxs]
min_scales = torch.min(chunk_scales, dim=0).values
max_scales = torch.max(chunk_scales, dim=0).values
min_scales = torch.clamp(min_scales, -20, 20)
max_scales = torch.clamp(max_scales, -20, 20)
scale_bounds = torch.cat([min_scales, max_scales])
# Colors
chunk_colors = sh0_colors[splat_idxs]
min_colors = torch.min(chunk_colors, dim=0).values
max_colors = torch.max(chunk_colors, dim=0).values
color_bounds = torch.cat([min_colors, max_colors])
chunk_data.extend([mean_bounds, scale_bounds, color_bounds])
# Quantized properties:
# Means
normalized_means = (chunk_means - min_means) / (max_means - min_means)
means_i = pack_111011(
normalized_means[:, 0],
normalized_means[:, 1],
normalized_means[:, 2],
)
# Quaternions
chunk_quats = quats[splat_idxs]
quat_i = pack_rotation(chunk_quats)
# Scales
normalized_scales = (chunk_scales - min_scales) / (max_scales - min_scales)
scales_i = pack_111011(
normalized_scales[:, 0],
normalized_scales[:, 1],
normalized_scales[:, 2],
)
# Colors
normalized_colors = (chunk_colors - min_colors) / (max_colors - min_colors)
chunk_opacities = opacities[splat_idxs]
chunk_opacities = 1 / (1 + torch.exp(-chunk_opacities))
chunk_opacities = chunk_opacities.unsqueeze(-1)
normalized_colors_i = torch.cat([normalized_colors, chunk_opacities], dim=-1)
color_i = pack_8888(
normalized_colors_i[:, 0],
normalized_colors_i[:, 1],
normalized_colors_i[:, 2],
normalized_colors_i[:, 3],
)
splat_data_chunk = torch.stack([means_i, quat_i, scales_i, color_i], dim=1)
splat_data_chunk = splat_data_chunk.ravel().to(torch.int64)
splat_data.extend([splat_data_chunk])
# Quantized spherical harmonics
shN_chunk = shN[splat_idxs]
shN_chunk_quantized = (shN_chunk / 8 + 0.5) * 256
shN_chunk_quantized = torch.clamp(torch.trunc(shN_chunk_quantized), 0, 255)
shN_chunk_quantized = shN_chunk_quantized.to(torch.uint8)
sh_data.extend([shN_chunk_quantized.ravel()])
float_dtype = np.dtype(np.float32).newbyteorder("<")
uint32_dtype = np.dtype(np.uint32).newbyteorder("<")
uint8_dtype = np.dtype(np.uint8)
buffer.write(
torch.cat(chunk_data).detach().cpu().numpy().astype(float_dtype).tobytes()
)
buffer.write(
torch.cat(splat_data).detach().cpu().numpy().astype(uint32_dtype).tobytes()
)
buffer.write(
torch.cat(sh_data).detach().cpu().numpy().astype(uint8_dtype).tobytes()
)
return buffer.getvalue()
def splat2ply_bytes(
means: torch.Tensor,
scales: torch.Tensor,
quats: torch.Tensor,
opacities: torch.Tensor,
sh0: torch.Tensor,
shN: torch.Tensor,
) -> bytes:
"""Return the binary Ply file. Supported by almost all viewers.
Args:
means (torch.Tensor): Splat means. Shape (N, 3)
scales (torch.Tensor): Splat scales. Shape (N, 3)
quats (torch.Tensor): Splat quaternions. Shape (N, 4)
opacities (torch.Tensor): Splat opacities. Shape (N,)
sh0 (torch.Tensor): Spherical harmonics. Shape (N, 3)
shN (torch.Tensor): Spherical harmonics. Shape (N, K*3)
Returns:
bytes: Binary Ply file representing the model.
"""
num_splats = means.shape[0]
buffer = BytesIO()
# Write PLY header
buffer.write(b"ply\n")
buffer.write(b"format binary_little_endian 1.0\n")
buffer.write(f"element vertex {num_splats}\n".encode())
buffer.write(b"property float x\n")
buffer.write(b"property float y\n")
buffer.write(b"property float z\n")
for i, data in enumerate([sh0, shN]):
prefix = "f_dc" if i == 0 else "f_rest"
for j in range(data.shape[1]):
buffer.write(f"property float {prefix}_{j}\n".encode())
buffer.write(b"property float opacity\n")
for i in range(scales.shape[1]):
buffer.write(f"property float scale_{i}\n".encode())
for i in range(quats.shape[1]):
buffer.write(f"property float rot_{i}\n".encode())
buffer.write(b"end_header\n")
# Concatenate all tensors in the correct order
splat_data = torch.cat(
[means, sh0, shN, opacities.unsqueeze(1), scales, quats], dim=1
)
# Ensure correct dtype
splat_data = splat_data.to(torch.float32)
# Write binary data
float_dtype = np.dtype(np.float32).newbyteorder("<")
buffer.write(splat_data.detach().cpu().numpy().astype(float_dtype).tobytes())
return buffer.getvalue()
def splat2splat_bytes(
means: torch.Tensor,
scales: torch.Tensor,
quats: torch.Tensor,
opacities: torch.Tensor,
sh0: torch.Tensor,
) -> bytes:
"""Return the binary Splat file. Supported by antimatter15 viewer.
Args:
means (torch.Tensor): Splat means. Shape (N, 3)
scales (torch.Tensor): Splat scales. Shape (N, 3)
quats (torch.Tensor): Splat quaternions. Shape (N, 4)
opacities (torch.Tensor): Splat opacities. Shape (N,)
sh0 (torch.Tensor): Spherical harmonics. Shape (N, 3)
Returns:
bytes: Binary Splat file representing the model.
"""
# Preprocess
scales = torch.exp(scales)
sh0_color = sh2rgb(sh0)
colors = torch.cat([sh0_color, torch.sigmoid(opacities).unsqueeze(-1)], dim=1)
colors = (colors * 255).clamp(0, 255).to(torch.uint8)
rots = (quats / torch.linalg.norm(quats, dim=1, keepdim=True)) * 128 + 128
rots = rots.clamp(0, 255).to(torch.uint8)
# Sort splats
num_splats = means.shape[0]
indices = sort_centers(means, torch.arange(num_splats))
# Reorder everything
means = means[indices]
scales = scales[indices]
colors = colors[indices]
rots = rots[indices]
float_dtype = np.dtype(np.float32).newbyteorder("<")
means_np = means.detach().cpu().numpy().astype(float_dtype)
scales_np = scales.detach().cpu().numpy().astype(float_dtype)
colors_np = colors.detach().cpu().numpy().astype(np.uint8)
rots_np = rots.detach().cpu().numpy().astype(np.uint8)
buffer = BytesIO()
for i in range(num_splats):
buffer.write(means_np[i].tobytes())
buffer.write(scales_np[i].tobytes())
buffer.write(colors_np[i].tobytes())
buffer.write(rots_np[i].tobytes())
return buffer.getvalue()
def export_splats(
means: torch.Tensor,
scales: torch.Tensor,
quats: torch.Tensor,
opacities: torch.Tensor,
sh0: torch.Tensor,
shN: torch.Tensor,
format: Literal["ply", "splat", "ply_compressed"] = "ply",
save_to: Optional[str] = None,
) -> bytes:
"""Export a Gaussian Splats model to bytes.
The three supported formats are:
- ply: A standard PLY file format. Supported by most viewers.
- splat: A custom Splat file format. Supported by antimatter15 viewer.
- ply_compressed: A compressed PLY file format. Used by Supersplat viewer.
Args:
means (torch.Tensor): Splat means. Shape (N, 3)
scales (torch.Tensor): Splat scales. Shape (N, 3)
quats (torch.Tensor): Splat quaternions. Shape (N, 4)
opacities (torch.Tensor): Splat opacities. Shape (N,)
sh0 (torch.Tensor): Spherical harmonics. Shape (N, 1, 3)
shN (torch.Tensor): Spherical harmonics. Shape (N, K, 3)
format (str): Export format. Options: "ply", "splat", "ply_compressed". Default: "ply"
save_to (str): Output file path. If provided, the bytes will be written to file.
"""
total_splats = means.shape[0]
assert means.shape == (total_splats, 3), "Means must be of shape (N, 3)"
assert scales.shape == (total_splats, 3), "Scales must be of shape (N, 3)"
assert quats.shape == (total_splats, 4), "Quaternions must be of shape (N, 4)"
assert opacities.shape == (total_splats,), "Opacities must be of shape (N,)"
assert sh0.shape == (total_splats, 1, 3), "sh0 must be of shape (N, 1, 3)"
assert (
shN.ndim == 3 and shN.shape[0] == total_splats and shN.shape[2] == 3
), f"shN must be of shape (N, K, 3), got {shN.shape}"
# Reshape spherical harmonics
sh0 = sh0.squeeze(1) # Shape (N, 3)
shN = shN.permute(0, 2, 1).reshape(means.shape[0], -1) # Shape (N, K * 3)
# Check for NaN or Inf values
invalid_mask = (
torch.isnan(means).any(dim=1)
| torch.isinf(means).any(dim=1)
| torch.isnan(scales).any(dim=1)
| torch.isinf(scales).any(dim=1)
| torch.isnan(quats).any(dim=1)
| torch.isinf(quats).any(dim=1)
| torch.isnan(opacities).any(dim=0)
| torch.isinf(opacities).any(dim=0)
| torch.isnan(sh0).any(dim=1)
| torch.isinf(sh0).any(dim=1)
| torch.isnan(shN).any(dim=1)
| torch.isinf(shN).any(dim=1)
)
# Filter out invalid entries
valid_mask = ~invalid_mask
means = means[valid_mask]
scales = scales[valid_mask]
quats = quats[valid_mask]
opacities = opacities[valid_mask]
sh0 = sh0[valid_mask]
shN = shN[valid_mask]
if format == "ply":
data = splat2ply_bytes(means, scales, quats, opacities, sh0, shN)
elif format == "splat":
data = splat2splat_bytes(means, scales, quats, opacities, sh0)
elif format == "ply_compressed":
data = splat2ply_bytes_compressed(means, scales, quats, opacities, sh0, shN)
else:
raise ValueError(f"Unsupported format: {format}")
if save_to:
with open(save_to, "wb") as binary_file:
binary_file.write(data)
return data