|
from concurrent.futures import ThreadPoolExecutor, as_completed |
|
import json |
|
from dataclasses import dataclass |
|
from functools import cached_property |
|
from pathlib import Path |
|
import random |
|
from typing import Literal |
|
import os |
|
import numpy as np |
|
import torch |
|
import torchvision.transforms as tf |
|
from einops import rearrange, repeat |
|
from jaxtyping import Float, UInt8 |
|
from PIL import Image |
|
from torch import Tensor |
|
from torch.utils.data import Dataset |
|
import os.path as osp |
|
import cv2 |
|
from ..geometry.projection import get_fov |
|
from .dataset import DatasetCfgCommon |
|
from .shims.augmentation_shim import apply_augmentation_shim |
|
from .shims.crop_shim import apply_crop_shim |
|
from .types import Stage |
|
from .view_sampler import ViewSampler |
|
from ..misc.cam_utils import camera_normalization |
|
|
|
from .shims.geometry_shim import depthmap_to_absolute_camera_coordinates |
|
|
|
CATEGORY = {'train': |
|
["backpack", "ball", "banana", "baseballbat", "baseballglove", |
|
"bench", "bicycle", "book", "bottle", "bowl", "broccoli", "cake", "car", "carrot", |
|
"cellphone", "chair", "couch", "cup", "donut", "frisbee", "hairdryer", "handbag", |
|
"hotdog", "hydrant", "keyboard", "kite", "laptop", "microwave", |
|
"motorcycle", |
|
"mouse", "orange", "parkingmeter", "pizza", "plant", "remote", "sandwich", |
|
"skateboard", "stopsign", |
|
"suitcase", "teddybear", "toaster", "toilet", "toybus", |
|
"toyplane", "toytrain", "toytruck", "tv", |
|
"umbrella", "vase", "wineglass",], |
|
'test': ['teddybear']} |
|
|
|
@dataclass |
|
class DatasetCo3dCfg(DatasetCfgCommon): |
|
name: str |
|
roots: list[Path] |
|
baseline_min: float |
|
baseline_max: float |
|
max_fov: float |
|
make_baseline_1: bool |
|
augment: bool |
|
relative_pose: bool |
|
skip_bad_shape: bool |
|
normalize_by_pts3d: bool |
|
intr_augment: bool |
|
rescale_to_1cube: bool |
|
mask_bg: Literal['rand', True, False] = True |
|
|
|
@dataclass |
|
class DatasetCo3dCfgWrapper: |
|
co3d: DatasetCo3dCfg |
|
|
|
|
|
class DatasetCo3d(Dataset): |
|
cfg: DatasetCo3dCfg |
|
stage: Stage |
|
view_sampler: ViewSampler |
|
|
|
to_tensor: tf.ToTensor |
|
chunks: list[Path] |
|
near: float = 0.1 |
|
far: float = 100.0 |
|
|
|
def __init__( |
|
self, |
|
cfg: DatasetCo3dCfg, |
|
stage: Stage, |
|
view_sampler: ViewSampler, |
|
) -> None: |
|
super().__init__() |
|
self.cfg = cfg |
|
self.stage = stage |
|
self.view_sampler = view_sampler |
|
self.to_tensor = tf.ToTensor() |
|
|
|
self.root = cfg.roots[0] |
|
self.mask_bg = cfg.mask_bg |
|
assert self.mask_bg in ('rand', True, False) |
|
|
|
|
|
self.categories = CATEGORY[self.data_stage] |
|
self.scene_seq_dict = {} |
|
self.scene_ids = [] |
|
for category in self.categories: |
|
with open(osp.join(self.root, f"{category}/valid_seq.json"), "r") as f: |
|
scene_seq_dict = json.load(f) |
|
for scene, seqs in scene_seq_dict.items(): |
|
self.scene_seq_dict[f"{category}/{scene}"] = seqs |
|
self.scene_ids.append(f"{category}/{scene}") |
|
|
|
print(f"CO3Dv2 {self.stage}: loaded {len(self.scene_seq_dict)} scenes") |
|
|
|
def load_frames(self, scene_id, frame_ids): |
|
with ThreadPoolExecutor(max_workers=32) as executor: |
|
|
|
futures_with_idx = [] |
|
for idx, frame_id in enumerate(frame_ids): |
|
file_path = os.path.join(self.root, f"{scene_id}/images/frame{frame_id:06d}.jpg") |
|
futures_with_idx.append( |
|
( |
|
idx, |
|
executor.submit( |
|
lambda p: self.to_tensor(Image.open(p).convert("RGB")), |
|
file_path, |
|
), |
|
) |
|
) |
|
|
|
|
|
torch_images = [None] * len(frame_ids) |
|
for idx, future in futures_with_idx: |
|
torch_images[idx] = future.result() |
|
|
|
sizes = set(img.shape for img in torch_images) |
|
if len(sizes) == 1: |
|
torch_images = torch.stack(torch_images) |
|
|
|
return torch_images |
|
|
|
def load_npz(self, scene_id, frame_id): |
|
npzpath = os.path.join(self.root, f"{scene_id}/images/frame{frame_id:06d}.npz") |
|
imgpath = os.path.join(self.root, f"{scene_id}/images/frame{frame_id:06d}.jpg") |
|
img = Image.open(imgpath) |
|
|
|
W, H = img.size |
|
npzdata = np.load(npzpath) |
|
intri = npzdata['camera_intrinsics'] |
|
extri = npzdata['camera_pose'] |
|
intri[0, 0] /= float(W) |
|
intri[1, 1] /= float(H) |
|
intri[0, 2] /= float(W) |
|
intri[1, 2] /= float(H) |
|
md = npzdata['maximum_depth'] |
|
return intri, extri, md |
|
|
|
def load_depth(self, scene_id, frame_ids, mds): |
|
torch_depths = [] |
|
for frame_id in frame_ids: |
|
depthpath = os.path.join(self.root, f"{scene_id}/depths/frame{frame_id:06d}.jpg.geometric.png") |
|
depth = cv2.imread(depthpath, cv2.IMREAD_UNCHANGED)/65535*np.nan_to_num(mds[frame_id]) |
|
depth = np.nan_to_num(depth) |
|
torch_depths.append(torch.from_numpy(depth)) |
|
return torch_depths |
|
|
|
def load_masks(self, scene_id, frame_ids): |
|
masks = [] |
|
for frame_id in frame_ids: |
|
maskpath = os.path.join(self.root, f"{scene_id}/masks/frame{frame_id:06d}.png") |
|
maskmap = cv2.imread(maskpath, cv2.IMREAD_UNCHANGED).astype(np.float32) |
|
maskmap = (maskmap / 255.0) > 0.1 |
|
masks.append(torch.from_numpy(maskmap)) |
|
return masks |
|
|
|
def getitem(self, index: int, num_context_views: int, patchsize: tuple) -> dict: |
|
scene_id = self.scene_ids[index] |
|
seq = self.scene_seq_dict[scene_id] |
|
|
|
extrinsics = [] |
|
intrinsics = [] |
|
frame_ids = [] |
|
mds = {} |
|
for frame_id in seq: |
|
intri, extri, md = self.load_npz(scene_id, frame_id) |
|
extrinsics.append(extri) |
|
intrinsics.append(intri) |
|
frame_ids.append(frame_id) |
|
mds[frame_id] = md |
|
|
|
extrinsics = np.array(extrinsics) |
|
intrinsics = np.array(intrinsics) |
|
extrinsics = torch.tensor(extrinsics, dtype=torch.float32) |
|
intrinsics = torch.tensor(intrinsics, dtype=torch.float32) |
|
|
|
num_views = extrinsics.shape[0] |
|
context_indices = torch.tensor(random.sample(range(num_views), num_context_views)) |
|
remaining_indices = torch.tensor([i for i in range(num_views) if i not in context_indices]) |
|
target_indices = torch.tensor(random.sample(remaining_indices.tolist(), self.view_sampler.num_target_views)) |
|
|
|
|
|
if (get_fov(intrinsics).rad2deg() > self.cfg.max_fov).any(): |
|
raise Exception("Field of view too wide") |
|
|
|
input_frames = [frame_ids[i] for i in context_indices] |
|
target_frame = [frame_ids[i] for i in target_indices] |
|
|
|
context_images = self.load_frames(scene_id, input_frames) |
|
target_images = self.load_frames(scene_id, target_frame) |
|
context_depths = self.load_depth(scene_id, input_frames, mds) |
|
target_depths = self.load_depth(scene_id, target_frame, mds) |
|
|
|
mask_bg = (self.mask_bg == True) or (self.mask_bg == "rand" and np.random.random() < 0.5) |
|
if mask_bg: |
|
context_masks = self.load_masks(scene_id, input_frames) |
|
target_mask = self.load_masks(scene_id, target_frame) |
|
|
|
|
|
context_depths = [depth * mask for depth, mask in zip(context_depths, context_masks)] |
|
target_depths = [depth * mask for depth, mask in zip(target_depths, target_mask)] |
|
|
|
|
|
|
|
context_extrinsics = extrinsics[context_indices] |
|
if self.cfg.make_baseline_1: |
|
a, b = context_extrinsics[0, :3, 3], context_extrinsics[-1, :3, 3] |
|
scale = (a - b).norm() |
|
if scale < self.cfg.baseline_min or scale > self.cfg.baseline_max: |
|
print( |
|
f"Skipped {scene_id} because of baseline out of range: " |
|
f"{scale:.6f}" |
|
) |
|
raise Exception("baseline out of range") |
|
extrinsics[:, :3, 3] /= scale |
|
else: |
|
scale = 1 |
|
|
|
if self.cfg.relative_pose: |
|
extrinsics = camera_normalization(extrinsics[context_indices][0:1], extrinsics) |
|
|
|
|
|
if self.cfg.rescale_to_1cube: |
|
scene_scale = torch.max(torch.abs(extrinsics[context_indices][:, :3, 3])) |
|
|
|
|
|
rescale_factor = 1 * scene_scale |
|
extrinsics[:, :3, 3] /= rescale_factor |
|
|
|
example = { |
|
"context": { |
|
"extrinsics": extrinsics[context_indices], |
|
"intrinsics": intrinsics[context_indices], |
|
"image": context_images, |
|
"depth": context_depths, |
|
"near": self.get_bound("near", len(context_indices)), |
|
"far": self.get_bound("far", len(context_indices)), |
|
"index": context_indices, |
|
|
|
}, |
|
"target": { |
|
"extrinsics": extrinsics[target_indices], |
|
"intrinsics": intrinsics[target_indices], |
|
"image": target_images, |
|
"depth": target_depths, |
|
"near": self.get_bound("near", len(target_indices)), |
|
"far": self.get_bound("far", len(target_indices)), |
|
"index": target_indices, |
|
}, |
|
"scene": f"CO3Dv2 {scene_id}", |
|
} |
|
|
|
if self.stage == "train" and self.cfg.intr_augment: |
|
intr_aug = True |
|
else: |
|
intr_aug = False |
|
|
|
example = apply_crop_shim(example, (patchsize[0] * 14, patchsize[1] * 14), intr_aug=intr_aug) |
|
|
|
if self.stage == "train" and self.cfg.augment: |
|
example = apply_augmentation_shim(example) |
|
|
|
|
|
|
|
image_size = example["context"]["image"].shape[2:] |
|
context_intrinsics = example["context"]["intrinsics"].clone().detach().numpy() |
|
context_intrinsics[:, 0] = context_intrinsics[:, 0] * image_size[1] |
|
context_intrinsics[:, 1] = context_intrinsics[:, 1] * image_size[0] |
|
|
|
target_intrinsics = example["target"]["intrinsics"].clone().detach().numpy() |
|
target_intrinsics[:, 0] = target_intrinsics[:, 0] * image_size[1] |
|
target_intrinsics[:, 1] = target_intrinsics[:, 1] * image_size[0] |
|
|
|
context_pts3d_list, context_valid_mask_list = [], [] |
|
target_pts3d_list, target_valid_mask_list = [], [] |
|
|
|
for i in range(len(example["context"]["depth"])): |
|
context_pts3d, context_valid_mask = depthmap_to_absolute_camera_coordinates(example["context"]["depth"][i].numpy(), context_intrinsics[i], example["context"]["extrinsics"][i].numpy()) |
|
context_pts3d_list.append(torch.from_numpy(context_pts3d).to(torch.float32)) |
|
context_valid_mask_list.append(torch.from_numpy(context_valid_mask)) |
|
|
|
context_pts3d = torch.stack(context_pts3d_list, dim=0) |
|
context_valid_mask = torch.stack(context_valid_mask_list, dim=0) |
|
|
|
for i in range(len(example["target"]["depth"])): |
|
target_pts3d, target_valid_mask = depthmap_to_absolute_camera_coordinates(example["target"]["depth"][i].numpy(), target_intrinsics[i], example["target"]["extrinsics"][i].numpy()) |
|
target_pts3d_list.append(torch.from_numpy(target_pts3d).to(torch.float32)) |
|
target_valid_mask_list.append(torch.from_numpy(target_valid_mask)) |
|
|
|
target_pts3d = torch.stack(target_pts3d_list, dim=0) |
|
target_valid_mask = torch.stack(target_valid_mask_list, dim=0) |
|
|
|
|
|
if self.cfg.normalize_by_pts3d: |
|
transformed_pts3d = context_pts3d[context_valid_mask] |
|
scene_factor = transformed_pts3d.norm(dim=-1).mean().clip(min=1e-8) |
|
|
|
context_pts3d /= scene_factor |
|
example["context"]["depth"] /= scene_factor |
|
example["context"]["extrinsics"][:, :3, 3] /= scene_factor |
|
|
|
target_pts3d /= scene_factor |
|
example["target"]["depth"] /= scene_factor |
|
example["target"]["extrinsics"][:, :3, 3] /= scene_factor |
|
|
|
example["context"]["pts3d"] = context_pts3d |
|
example["target"]["pts3d"] = target_pts3d |
|
example["context"]["valid_mask"] = context_valid_mask |
|
example["target"]["valid_mask"] = target_valid_mask |
|
|
|
if torch.isnan(example["context"]["depth"]).any() or torch.isinf(example["context"]["depth"]).any() or \ |
|
torch.isnan(example["context"]["extrinsics"]).any() or torch.isinf(example["context"]["extrinsics"]).any() or \ |
|
torch.isnan(example["context"]["pts3d"]).any() or torch.isinf(example["context"]["pts3d"]).any() or \ |
|
torch.isnan(example["context"]["intrinsics"]).any() or torch.isinf(example["context"]["intrinsics"]).any() or \ |
|
torch.isnan(example["target"]["depth"]).any() or torch.isinf(example["target"]["depth"]).any() or \ |
|
torch.isnan(example["target"]["extrinsics"]).any() or torch.isinf(example["target"]["extrinsics"]).any() or \ |
|
torch.isnan(example["target"]["pts3d"]).any() or torch.isinf(example["target"]["pts3d"]).any() or \ |
|
torch.isnan(example["target"]["intrinsics"]).any() or torch.isinf(example["target"]["intrinsics"]).any(): |
|
raise Exception("encounter nan or inf in context depth") |
|
|
|
for key in ["context", "target"]: |
|
example[key]["valid_mask"] = (torch.ones_like(example[key]["valid_mask"]) * -1).type(torch.int32) |
|
|
|
return example |
|
|
|
|
|
def __getitem__(self, index_tuple: tuple) -> dict: |
|
index, num_context_views, patchsize_h = index_tuple |
|
patchsize_w = (self.cfg.input_image_shape[1] // 14) |
|
try: |
|
return self.getitem(index, num_context_views, (patchsize_h, patchsize_w)) |
|
except Exception as e: |
|
print(f"Error: {e}") |
|
index = np.random.randint(len(self)) |
|
return self.__getitem__((index, num_context_views, patchsize_h)) |
|
|
|
def get_bound( |
|
self, |
|
bound: Literal["near", "far"], |
|
num_views: int, |
|
) -> Float[Tensor, " view"]: |
|
value = torch.tensor(getattr(self, bound), dtype=torch.float32) |
|
return repeat(value, "-> v", v=num_views) |
|
|
|
@property |
|
def data_stage(self) -> Stage: |
|
if self.cfg.overfit_to_scene is not None: |
|
return "test" |
|
if self.stage == "val": |
|
return "test" |
|
return self.stage |
|
|
|
@cached_property |
|
def index(self) -> dict[str, Path]: |
|
merged_index = {} |
|
data_stages = [self.data_stage] |
|
if self.cfg.overfit_to_scene is not None: |
|
data_stages = ("test", "train") |
|
for data_stage in data_stages: |
|
for root in self.cfg.roots: |
|
|
|
with (root / data_stage / "index.json").open("r") as f: |
|
index = json.load(f) |
|
index = {k: Path(root / data_stage / v) for k, v in index.items()} |
|
|
|
|
|
assert not (set(merged_index.keys()) & set(index.keys())) |
|
|
|
|
|
merged_index = {**merged_index, **index} |
|
return merged_index |
|
|
|
def __len__(self) -> int: |
|
return len(self.scene_ids) |