AnySplat / src /dataset /dataset_co3d.py
alexnasa's picture
Upload 243 files
2568013 verified
from concurrent.futures import ThreadPoolExecutor, as_completed
import json
from dataclasses import dataclass
from functools import cached_property
from pathlib import Path
import random
from typing import Literal
import os
import numpy as np
import torch
import torchvision.transforms as tf
from einops import rearrange, repeat
from jaxtyping import Float, UInt8
from PIL import Image
from torch import Tensor
from torch.utils.data import Dataset
import os.path as osp
import cv2
from ..geometry.projection import get_fov
from .dataset import DatasetCfgCommon
from .shims.augmentation_shim import apply_augmentation_shim
from .shims.crop_shim import apply_crop_shim
from .types import Stage
from .view_sampler import ViewSampler
from ..misc.cam_utils import camera_normalization
from .shims.geometry_shim import depthmap_to_absolute_camera_coordinates
CATEGORY = {'train':
["backpack", "ball", "banana", "baseballbat", "baseballglove",
"bench", "bicycle", "book", "bottle", "bowl", "broccoli", "cake", "car", "carrot",
"cellphone", "chair", "couch", "cup", "donut", "frisbee", "hairdryer", "handbag",
"hotdog", "hydrant", "keyboard", "kite", "laptop", "microwave",
"motorcycle",
"mouse", "orange", "parkingmeter", "pizza", "plant", "remote", "sandwich",
"skateboard", "stopsign",
"suitcase", "teddybear", "toaster", "toilet", "toybus",
"toyplane", "toytrain", "toytruck", "tv",
"umbrella", "vase", "wineglass",],
'test': ['teddybear']}
@dataclass
class DatasetCo3dCfg(DatasetCfgCommon):
name: str
roots: list[Path]
baseline_min: float
baseline_max: float
max_fov: float
make_baseline_1: bool
augment: bool
relative_pose: bool
skip_bad_shape: bool
normalize_by_pts3d: bool
intr_augment: bool
rescale_to_1cube: bool
mask_bg: Literal['rand', True, False] = True
@dataclass
class DatasetCo3dCfgWrapper:
co3d: DatasetCo3dCfg
class DatasetCo3d(Dataset):
cfg: DatasetCo3dCfg
stage: Stage
view_sampler: ViewSampler
to_tensor: tf.ToTensor
chunks: list[Path]
near: float = 0.1
far: float = 100.0
def __init__(
self,
cfg: DatasetCo3dCfg,
stage: Stage,
view_sampler: ViewSampler,
) -> None:
super().__init__()
self.cfg = cfg
self.stage = stage
self.view_sampler = view_sampler
self.to_tensor = tf.ToTensor()
self.root = cfg.roots[0]
self.mask_bg = cfg.mask_bg
assert self.mask_bg in ('rand', True, False)
# load all scenes
self.categories = CATEGORY[self.data_stage]
self.scene_seq_dict = {}
self.scene_ids = []
for category in self.categories:
with open(osp.join(self.root, f"{category}/valid_seq.json"), "r") as f:
scene_seq_dict = json.load(f)
for scene, seqs in scene_seq_dict.items():
self.scene_seq_dict[f"{category}/{scene}"] = seqs
self.scene_ids.append(f"{category}/{scene}")
print(f"CO3Dv2 {self.stage}: loaded {len(self.scene_seq_dict)} scenes")
def load_frames(self, scene_id, frame_ids):
with ThreadPoolExecutor(max_workers=32) as executor:
# Create a list to store futures with their original indices
futures_with_idx = []
for idx, frame_id in enumerate(frame_ids):
file_path = os.path.join(self.root, f"{scene_id}/images/frame{frame_id:06d}.jpg")
futures_with_idx.append(
(
idx,
executor.submit(
lambda p: self.to_tensor(Image.open(p).convert("RGB")),
file_path,
),
)
)
# Pre-allocate list with correct size to maintain order
torch_images = [None] * len(frame_ids)
for idx, future in futures_with_idx:
torch_images[idx] = future.result()
# Check if all images have the same size
sizes = set(img.shape for img in torch_images)
if len(sizes) == 1:
torch_images = torch.stack(torch_images)
# Return as list if images have different sizes
return torch_images
def load_npz(self, scene_id, frame_id):
npzpath = os.path.join(self.root, f"{scene_id}/images/frame{frame_id:06d}.npz")
imgpath = os.path.join(self.root, f"{scene_id}/images/frame{frame_id:06d}.jpg")
img = Image.open(imgpath)
# breakpoint()
W, H = img.size
npzdata = np.load(npzpath)
intri = npzdata['camera_intrinsics']
extri = npzdata['camera_pose']
intri[0, 0] /= float(W)
intri[1, 1] /= float(H)
intri[0, 2] /= float(W)
intri[1, 2] /= float(H)
md = npzdata['maximum_depth']
return intri, extri, md
def load_depth(self, scene_id, frame_ids, mds):
torch_depths = []
for frame_id in frame_ids:
depthpath = os.path.join(self.root, f"{scene_id}/depths/frame{frame_id:06d}.jpg.geometric.png")
depth = cv2.imread(depthpath, cv2.IMREAD_UNCHANGED)/65535*np.nan_to_num(mds[frame_id])
depth = np.nan_to_num(depth)
torch_depths.append(torch.from_numpy(depth))
return torch_depths
def load_masks(self, scene_id, frame_ids):
masks = []
for frame_id in frame_ids:
maskpath = os.path.join(self.root, f"{scene_id}/masks/frame{frame_id:06d}.png")
maskmap = cv2.imread(maskpath, cv2.IMREAD_UNCHANGED).astype(np.float32)
maskmap = (maskmap / 255.0) > 0.1
masks.append(torch.from_numpy(maskmap))
return masks
def getitem(self, index: int, num_context_views: int, patchsize: tuple) -> dict:
scene_id = self.scene_ids[index]
seq = self.scene_seq_dict[scene_id]
extrinsics = []
intrinsics = []
frame_ids = []
mds = {}
for frame_id in seq:
intri, extri, md = self.load_npz(scene_id, frame_id)
extrinsics.append(extri)
intrinsics.append(intri)
frame_ids.append(frame_id)
mds[frame_id] = md
extrinsics = np.array(extrinsics)
intrinsics = np.array(intrinsics)
extrinsics = torch.tensor(extrinsics, dtype=torch.float32)
intrinsics = torch.tensor(intrinsics, dtype=torch.float32)
num_views = extrinsics.shape[0]
context_indices = torch.tensor(random.sample(range(num_views), num_context_views))
remaining_indices = torch.tensor([i for i in range(num_views) if i not in context_indices])
target_indices = torch.tensor(random.sample(remaining_indices.tolist(), self.view_sampler.num_target_views))
# Skip the example if the field of view is too wide.
if (get_fov(intrinsics).rad2deg() > self.cfg.max_fov).any():
raise Exception("Field of view too wide")
input_frames = [frame_ids[i] for i in context_indices]
target_frame = [frame_ids[i] for i in target_indices]
context_images = self.load_frames(scene_id, input_frames)
target_images = self.load_frames(scene_id, target_frame)
context_depths = self.load_depth(scene_id, input_frames, mds)
target_depths = self.load_depth(scene_id, target_frame, mds)
mask_bg = (self.mask_bg == True) or (self.mask_bg == "rand" and np.random.random() < 0.5)
if mask_bg:
context_masks = self.load_masks(scene_id, input_frames)
target_mask = self.load_masks(scene_id, target_frame)
# update the depthmap with mask
context_depths = [depth * mask for depth, mask in zip(context_depths, context_masks)]
target_depths = [depth * mask for depth, mask in zip(target_depths, target_mask)]
# Resize the world to make the baseline 1.
context_extrinsics = extrinsics[context_indices]
if self.cfg.make_baseline_1:
a, b = context_extrinsics[0, :3, 3], context_extrinsics[-1, :3, 3]
scale = (a - b).norm()
if scale < self.cfg.baseline_min or scale > self.cfg.baseline_max:
print(
f"Skipped {scene_id} because of baseline out of range: "
f"{scale:.6f}"
)
raise Exception("baseline out of range")
extrinsics[:, :3, 3] /= scale
else:
scale = 1
if self.cfg.relative_pose:
extrinsics = camera_normalization(extrinsics[context_indices][0:1], extrinsics)
# self.cfg.rescale_to_1cube = True
if self.cfg.rescale_to_1cube:
scene_scale = torch.max(torch.abs(extrinsics[context_indices][:, :3, 3])) # target pose is not included
# all_extrinsics = torch.cat([extrinsics[context_indices], extrinsics[target_indices]], dim=0) # [N, 4, 4]
# scene_scale = torch.max(torch.abs(all_extrinsics[:, :3, 3]))
rescale_factor = 1 * scene_scale
extrinsics[:, :3, 3] /= rescale_factor
example = {
"context": {
"extrinsics": extrinsics[context_indices],
"intrinsics": intrinsics[context_indices],
"image": context_images,
"depth": context_depths,
"near": self.get_bound("near", len(context_indices)),
"far": self.get_bound("far", len(context_indices)),
"index": context_indices,
# "overlap": overlap,
},
"target": {
"extrinsics": extrinsics[target_indices],
"intrinsics": intrinsics[target_indices],
"image": target_images,
"depth": target_depths,
"near": self.get_bound("near", len(target_indices)),
"far": self.get_bound("far", len(target_indices)),
"index": target_indices,
},
"scene": f"CO3Dv2 {scene_id}",
}
if self.stage == "train" and self.cfg.intr_augment:
intr_aug = True
else:
intr_aug = False
example = apply_crop_shim(example, (patchsize[0] * 14, patchsize[1] * 14), intr_aug=intr_aug)
if self.stage == "train" and self.cfg.augment:
example = apply_augmentation_shim(example)
# example_1 = copy.deepcopy(example)
# world pts
image_size = example["context"]["image"].shape[2:]
context_intrinsics = example["context"]["intrinsics"].clone().detach().numpy()
context_intrinsics[:, 0] = context_intrinsics[:, 0] * image_size[1]
context_intrinsics[:, 1] = context_intrinsics[:, 1] * image_size[0]
target_intrinsics = example["target"]["intrinsics"].clone().detach().numpy()
target_intrinsics[:, 0] = target_intrinsics[:, 0] * image_size[1]
target_intrinsics[:, 1] = target_intrinsics[:, 1] * image_size[0]
context_pts3d_list, context_valid_mask_list = [], []
target_pts3d_list, target_valid_mask_list = [], []
for i in range(len(example["context"]["depth"])):
context_pts3d, context_valid_mask = depthmap_to_absolute_camera_coordinates(example["context"]["depth"][i].numpy(), context_intrinsics[i], example["context"]["extrinsics"][i].numpy())
context_pts3d_list.append(torch.from_numpy(context_pts3d).to(torch.float32))
context_valid_mask_list.append(torch.from_numpy(context_valid_mask))
context_pts3d = torch.stack(context_pts3d_list, dim=0)
context_valid_mask = torch.stack(context_valid_mask_list, dim=0)
for i in range(len(example["target"]["depth"])):
target_pts3d, target_valid_mask = depthmap_to_absolute_camera_coordinates(example["target"]["depth"][i].numpy(), target_intrinsics[i], example["target"]["extrinsics"][i].numpy())
target_pts3d_list.append(torch.from_numpy(target_pts3d).to(torch.float32))
target_valid_mask_list.append(torch.from_numpy(target_valid_mask))
target_pts3d = torch.stack(target_pts3d_list, dim=0)
target_valid_mask = torch.stack(target_valid_mask_list, dim=0)
# normalize by context pts3d
if self.cfg.normalize_by_pts3d:
transformed_pts3d = context_pts3d[context_valid_mask]
scene_factor = transformed_pts3d.norm(dim=-1).mean().clip(min=1e-8)
context_pts3d /= scene_factor
example["context"]["depth"] /= scene_factor
example["context"]["extrinsics"][:, :3, 3] /= scene_factor
target_pts3d /= scene_factor
example["target"]["depth"] /= scene_factor
example["target"]["extrinsics"][:, :3, 3] /= scene_factor
example["context"]["pts3d"] = context_pts3d
example["target"]["pts3d"] = target_pts3d
example["context"]["valid_mask"] = context_valid_mask
example["target"]["valid_mask"] = target_valid_mask
if torch.isnan(example["context"]["depth"]).any() or torch.isinf(example["context"]["depth"]).any() or \
torch.isnan(example["context"]["extrinsics"]).any() or torch.isinf(example["context"]["extrinsics"]).any() or \
torch.isnan(example["context"]["pts3d"]).any() or torch.isinf(example["context"]["pts3d"]).any() or \
torch.isnan(example["context"]["intrinsics"]).any() or torch.isinf(example["context"]["intrinsics"]).any() or \
torch.isnan(example["target"]["depth"]).any() or torch.isinf(example["target"]["depth"]).any() or \
torch.isnan(example["target"]["extrinsics"]).any() or torch.isinf(example["target"]["extrinsics"]).any() or \
torch.isnan(example["target"]["pts3d"]).any() or torch.isinf(example["target"]["pts3d"]).any() or \
torch.isnan(example["target"]["intrinsics"]).any() or torch.isinf(example["target"]["intrinsics"]).any():
raise Exception("encounter nan or inf in context depth")
for key in ["context", "target"]:
example[key]["valid_mask"] = (torch.ones_like(example[key]["valid_mask"]) * -1).type(torch.int32)
return example
def __getitem__(self, index_tuple: tuple) -> dict:
index, num_context_views, patchsize_h = index_tuple
patchsize_w = (self.cfg.input_image_shape[1] // 14)
try:
return self.getitem(index, num_context_views, (patchsize_h, patchsize_w))
except Exception as e:
print(f"Error: {e}")
index = np.random.randint(len(self))
return self.__getitem__((index, num_context_views, patchsize_h))
def get_bound(
self,
bound: Literal["near", "far"],
num_views: int,
) -> Float[Tensor, " view"]:
value = torch.tensor(getattr(self, bound), dtype=torch.float32)
return repeat(value, "-> v", v=num_views)
@property
def data_stage(self) -> Stage:
if self.cfg.overfit_to_scene is not None:
return "test"
if self.stage == "val":
return "test"
return self.stage
@cached_property
def index(self) -> dict[str, Path]:
merged_index = {}
data_stages = [self.data_stage]
if self.cfg.overfit_to_scene is not None:
data_stages = ("test", "train")
for data_stage in data_stages:
for root in self.cfg.roots:
# Load the root's index.
with (root / data_stage / "index.json").open("r") as f:
index = json.load(f)
index = {k: Path(root / data_stage / v) for k, v in index.items()}
# The constituent datasets should have unique keys.
assert not (set(merged_index.keys()) & set(index.keys()))
# Merge the root's index into the main index.
merged_index = {**merged_index, **index}
return merged_index
def __len__(self) -> int:
return len(self.scene_ids)