AnySplat / src /eval_pose.py
alexnasa's picture
Upload 243 files
2568013 verified
import os
import sys
import json
import gzip
import argparse
import numpy as np
from PIL import Image
import torch
import torch.nn as nn
import torchvision
from einops import rearrange
from lpips import LPIPS
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from src.model.model.anysplat import AnySplat
from src.model.encoder.vggt.utils.pose_enc import pose_encoding_to_extri_intri
from src.model.encoder.vggt.utils.load_fn import load_and_preprocess_images
from src.utils.pose import align_to_first_camera, calculate_auc_np, convert_pt3d_RT_to_opencv, se3_to_relative_pose_error
from src.misc.cam_utils import camera_normalization, pose_auc, rotation_6d_to_matrix, update_pose, get_pnp_pose
def setup_args():
"""Set up command-line arguments for the CO3D evaluation script."""
parser = argparse.ArgumentParser(description='Test AnySplat on CO3D dataset')
parser.add_argument('--debug', action='store_true', help='Enable debug mode (only test on specific category)')
parser.add_argument('--use_ba', action='store_true', default=False, help='Enable bundle adjustment')
parser.add_argument('--fast_eval', action='store_true', default=False, help='Only evaluate 10 sequences per category')
parser.add_argument('--min_num_images', type=int, default=50, help='Minimum number of images for a sequence')
parser.add_argument('--num_frames', type=int, default=10, help='Number of frames to use for testing')
parser.add_argument('--co3d_dir', type=str, required=True, help='Path to CO3D dataset')
parser.add_argument('--co3d_anno_dir', type=str, required=True, help='Path to CO3D annotations')
parser.add_argument('--seed', type=int, default=0, help='Random seed for reproducibility')
return parser.parse_args()
lpips = LPIPS(net="vgg")
def rendering_loss(pred_image, image):
lpips_loss = lpips.forward(rearrange(pred_image, "b v c h w -> (b v) c h w"), rearrange(image, "b v c h w -> (b v) c h w"), normalize=True)
delta = pred_image - (image + 1) / 2
mse_loss = (delta**2).mean()
return mse_loss + 0.05 * lpips_loss.mean()
def process_sequence(model, seq_name, seq_data, category, co3d_dir, min_num_images, num_frames, use_ba, device, dtype):
"""
Process a single sequence and compute pose errors.
Args:
model: AnySplat model
seq_name: Sequence name
seq_data: Sequence data
category: Category name
co3d_dir: CO3D dataset directory
min_num_images: Minimum number of images required
num_frames: Number of frames to sample
use_ba: Whether to use bundle adjustment
device: Device to run on
dtype: Data type for model inference
Returns:
rError: Rotation errors
tError: Translation errors
"""
if len(seq_data) < min_num_images:
return None, None
metadata = []
for data in seq_data:
# Make sure translations are not ridiculous
if data["T"][0] + data["T"][1] + data["T"][2] > 1e5:
return None, None
extri_opencv = convert_pt3d_RT_to_opencv(data["R"], data["T"])
metadata.append({
"filepath": data["filepath"],
"extri": extri_opencv,
})
ids = np.random.choice(len(metadata), num_frames, replace=False)
image_names = [os.path.join(co3d_dir, metadata[i]["filepath"]) for i in ids]
gt_extri = [np.array(metadata[i]["extri"]) for i in ids]
gt_extri = np.stack(gt_extri, axis=0)
max_size = max(Image.open(image_names[0]).size)
if max_size < 448:
return None, None
images = load_and_preprocess_images(image_names)[None].to(device)
batch = {
"context": {
"image": images*2.0-1,
"image_names": image_names,
"index": ids,
},
"scene": "co3d"
}
if use_ba:
try:
encoder_output = model.encoder(
batch,
global_step=0,
visualization_dump={},
)
gaussians, pred_context_pose = encoder_output.gaussians, encoder_output.pred_context_pose
pred_extrinsic = pred_context_pose['extrinsic']
pred_intrinsic = pred_context_pose['intrinsic']
# rendering ba
b, v, _, h, w = images.shape
with torch.set_grad_enabled(True), torch.cuda.amp.autocast(enabled=False, dtype=torch.float32):
cam_rot_delta = nn.Parameter(torch.zeros([b, v, 6], requires_grad=True, device=pred_extrinsic.device, dtype=torch.float32))
cam_trans_delta = nn.Parameter(torch.zeros([b, v, 3], requires_grad=True, device=pred_extrinsic.device, dtype=torch.float32))
opt_params = []
model.register_buffer("identity", torch.tensor([1.0, 0.0, 0.0, 0.0, 1.0, 0.0], dtype=torch.float32).to(pred_extrinsic.device))
opt_params.append(
{
"params": [cam_rot_delta],
"lr": 0.005,
}
)
opt_params.append(
{
"params": [cam_trans_delta],
"lr": 0.005,
}
)
pose_optimizer = torch.optim.Adam(opt_params)
extrinsics = pred_extrinsic.clone().float()
for i in range(100):
pose_optimizer.zero_grad()
dx, drot = cam_trans_delta, cam_rot_delta
rot = rotation_6d_to_matrix(
drot + model.identity.expand(b, v, -1)
) # (..., 3, 3)
transform = torch.eye(4, device=extrinsics.device).repeat((b, v, 1, 1))
transform[..., :3, :3] = rot
transform[..., :3, 3] = dx
new_extrinsics = torch.matmul(extrinsics, transform)
# breakpoint()
output = model.decoder.forward(
gaussians,
new_extrinsics,
pred_intrinsic.float(),
0.1,
100.0,
(h, w),
# cam_rot_delta=cam_rot_delta,
# cam_trans_delta=cam_trans_delta,
)
# export_ply(gaussians.means[0], gaussians.scales[0], gaussians.rotations[0], gaussians.harmonics[0], gaussians.opacities[0], Path(f"gaussians_co3d.ply"))
rendering_loss = rendering_loss(output.color, images*2.0-1)
torchvision.utils.save_image(output.color[0], f"outputs/vis/output_co3d_{i}.png")
print(f"Rendering loss: {rendering_loss.item()}")
# print(f"Rendering loss: {rendering_loss.item()}")
rendering_loss.backward()
pose_optimizer.step()
torchvision.utils.save_image(images[0], f"outputs/vis/gt_co3d.png")
pred_extrinsic = new_extrinsics.inverse()[0][:,:-1,:]
except Exception as e:
print(f"BA failed with error: {e}. Falling back to standard VGGT inference.")
with torch.no_grad(), torch.cuda.amp.autocast(dtype=dtype):
aggregated_tokens_list, patch_start_idx = model.encoder.aggregator(images, intermediate_layer_idx=model.encoder.cfg.intermediate_layer_idx)
with torch.cuda.amp.autocast(dtype=torch.float32):
fp32_tokens = [token.float() for token in aggregated_tokens_list]
pred_all_pose_enc = model.encoder.camera_head(fp32_tokens)[-1]
pred_all_extrinsic, pred_all_intrinsic = pose_encoding_to_extri_intri(pred_all_pose_enc, images.shape[-2:])
pred_extrinsic = pred_all_extrinsic[0]
else:
with torch.no_grad(), torch.cuda.amp.autocast(dtype=dtype):
aggregated_tokens_list, patch_start_idx = model.encoder.aggregator(images, intermediate_layer_idx=model.encoder.cfg.intermediate_layer_idx)
with torch.cuda.amp.autocast(dtype=torch.float32):
fp32_tokens = [token.float() for token in aggregated_tokens_list]
pred_all_pose_enc = model.encoder.camera_head(fp32_tokens)[-1]
pred_all_extrinsic, pred_all_intrinsic = pose_encoding_to_extri_intri(pred_all_pose_enc, images.shape[-2:])
pred_extrinsic = pred_all_extrinsic[0]
with torch.cuda.amp.autocast(dtype=torch.float32):
gt_extrinsic = torch.from_numpy(gt_extri).to(device)
add_row = torch.tensor([0, 0, 0, 1], device=device).expand(pred_extrinsic.size(0), 1, 4)
pred_se3 = torch.cat((pred_extrinsic, add_row), dim=1)
gt_se3 = torch.cat((gt_extrinsic, add_row), dim=1)
# Set the coordinate of the first camera as the coordinate of the world
# NOTE: DO NOT REMOVE THIS UNLESS YOU KNOW WHAT YOU ARE DOING
# pred_se3 = align_to_first_camera(pred_se3)
gt_se3 = align_to_first_camera(gt_se3)
rel_rangle_deg, rel_tangle_deg = se3_to_relative_pose_error(pred_se3, gt_se3, num_frames)
print(f"{category} sequence {seq_name} Rot Error: {rel_rangle_deg.mean().item():.4f}")
print(f"{category} sequence {seq_name} Trans Error: {rel_tangle_deg.mean().item():.4f}")
return rel_rangle_deg.cpu().numpy(), rel_tangle_deg.cpu().numpy()
def evaluate(args: argparse.Namespace):
model = AnySplat.from_pretrained("lhjiang/anysplat")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()
for param in model.parameters():
param.requires_grad = False
# CO3D evaluation
SEEN_CATEGORIES = [
"apple", "backpack", "banana", "baseballbat", "baseballglove",
"bench", "bicycle", "bottle", "bowl", "broccoli",
"cake", "car", "carrot", "cellphone", "chair",
"cup", "donut", "hairdryer", "handbag", "hydrant",
"keyboard", "laptop", "microwave", "motorcycle", "mouse",
"orange", "parkingmeter", "pizza", "plant", "stopsign",
"teddybear", "toaster", "toilet", "toybus", "toyplane",
"toytrain", "toytruck", "tv", "umbrella", "vase", "wineglass",
]
if args.debug:
SEEN_CATEGORIES = ["apple"]
per_category_results = {}
for category in SEEN_CATEGORIES:
print(f"Loading annotation for {category} test set")
annotation_file = os.path.join(args.co3d_anno_dir, f"{category}_test.jgz")
try:
with gzip.open(annotation_file, "r") as fin:
annotation = json.loads(fin.read())
except FileNotFoundError:
print(f"Annotation file not found for {category}, skipping")
continue
rError = []
tError = []
for seq_name, seq_data in annotation.items():
print("-" * 50)
print(f"Processing {seq_name} for {category} test set")
if args.debug and not os.path.exists(os.path.join(args.co3d_dir, category, seq_name)):
print(f"Skipping {seq_name} (not found)")
continue
seq_rError, seq_tError = process_sequence(
model, seq_name, seq_data, category, args.co3d_dir,
args.min_num_images, args.num_frames, args.use_ba, device, torch.bfloat16
)
print("-" * 50)
if seq_rError is not None and seq_tError is not None:
rError.extend(seq_rError)
tError.extend(seq_tError)
if not rError:
print(f"No valid sequences found for {category}, skipping")
continue
rError = np.array(rError)
tError = np.array(tError)
thresholds = [5, 10, 20, 30]
Aucs = {}
for threshold in thresholds:
Auc, _ = calculate_auc_np(rError, tError, max_threshold=threshold)
Aucs[threshold] = Auc
print("="*80)
print(f"AUC of {category} test set: {Aucs[30]:.4f}")
print("="*80)
per_category_results[category] = {
"rError": rError,
"tError": tError,
"Auc_5": Aucs[5],
"Auc_10": Aucs[10],
"Auc_20": Aucs[20],
"Auc_30": Aucs[30],
}
# Print summary results
print("\nSummary of AUC results:")
print("-"*50)
for category in sorted(per_category_results.keys()):
print(f"{category:<15} AUC_5: {per_category_results[category]['Auc_5']:.4f}")
print(f"{category:<15} AUC_30: {per_category_results[category]['Auc_30']:.4f}")
print(f"{category:<15} AUC_20: {per_category_results[category]['Auc_20']:.4f}")
print(f"{category:<15} AUC_10: {per_category_results[category]['Auc_10']:.4f}")
if per_category_results:
mean_AUC_30 = np.mean([per_category_results[category]["Auc_30"] for category in per_category_results])
mean_AUC_20 = np.mean([per_category_results[category]["Auc_20"] for category in per_category_results])
mean_AUC_10 = np.mean([per_category_results[category]["Auc_10"] for category in per_category_results])
mean_AUC_5 = np.mean([per_category_results[category]["Auc_5"] for category in per_category_results])
print("-"*50)
print(f"Mean AUC_5: {mean_AUC_5:.4f}")
print(f"Mean AUC_30: {mean_AUC_30:.4f}")
print(f"Mean AUC_20: {mean_AUC_20:.4f}")
print(f"Mean AUC_10: {mean_AUC_10:.4f}")
# Generate a random index to avoid overwriting previous results
# random_index = torch.randint(0, 10000, (1,)).item()
# Use timestamp as index instead of random number
import datetime
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
random_index = timestamp
results_file = f"co3d_results_{random_index}.txt"
with open(results_file, "w") as f:
f.write("CO3D Evaluation Results\n")
f.write("=" * 50 + "\n\n")
f.write("Per-category results:\n")
f.write("-" * 50 + "\n")
for category in sorted(per_category_results.keys()):
f.write(f"{category:<15} AUC_30: {per_category_results[category]['Auc_30']:.4f}\n")
f.write(f"{category:<15} AUC_20: {per_category_results[category]['Auc_20']:.4f}\n")
f.write(f"{category:<15} AUC_10: {per_category_results[category]['Auc_10']:.4f}\n")
f.write(f"{category:<15} AUC_5: {per_category_results[category]['Auc_5']:.4f}\n")
f.write("\n")
if per_category_results:
f.write("-" * 50 + "\n")
f.write(f"Mean AUC_30: {mean_AUC_30:.4f}\n")
f.write(f"Mean AUC_20: {mean_AUC_20:.4f}\n")
f.write(f"Mean AUC_10: {mean_AUC_10:.4f}\n")
f.write(f"Mean AUC_5: {mean_AUC_5:.4f}\n")
f.write("\n" + "=" * 50 + "\n")
print(f"Results saved to {results_file}")
if __name__ == "__main__":
args = setup_args()
evaluate(args)