AnySplat / src /evaluation /evaluation_index_generator.py
alexnasa's picture
Upload 243 files
2568013 verified
import json
from dataclasses import asdict, dataclass
from pathlib import Path
from typing import Optional
import torch
from einops import rearrange
from lightning.pytorch import LightningModule
from tqdm import tqdm
from ..geometry.epipolar_lines import project_rays
from ..geometry.projection import get_world_rays, sample_image_grid
from ..misc.image_io import save_image
from ..visualization.annotation import add_label
from ..visualization.layout import add_border, hcat
@dataclass
class EvaluationIndexGeneratorCfg:
num_target_views: int
min_distance: int
max_distance: int
min_overlap: float
max_overlap: float
output_path: Path
save_previews: bool
seed: int
@dataclass
class IndexEntry:
context: tuple[int, ...]
target: tuple[int, ...]
overlap: Optional[str | float] = None # choose from ["small", "medium", "large"] or a float number indicates the overlap ratio
class EvaluationIndexGenerator(LightningModule):
generator: torch.Generator
cfg: EvaluationIndexGeneratorCfg
index: dict[str, IndexEntry | None]
def __init__(self, cfg: EvaluationIndexGeneratorCfg) -> None:
super().__init__()
self.cfg = cfg
self.generator = torch.Generator()
self.generator.manual_seed(cfg.seed)
self.index = {}
def test_step(self, batch, batch_idx):
b, v, _, h, w = batch["target"]["image"].shape
assert b == 1
extrinsics = batch["target"]["extrinsics"][0]
intrinsics = batch["target"]["intrinsics"][0]
scene = batch["scene"][0]
context_indices = torch.randperm(v, generator=self.generator)
for context_index in tqdm(context_indices, "Finding context pair"):
xy, _ = sample_image_grid((h, w), self.device)
context_origins, context_directions = get_world_rays(
rearrange(xy, "h w xy -> (h w) xy"),
extrinsics[context_index],
intrinsics[context_index],
)
# Step away from context view until the minimum overlap threshold is met.
valid_indices = []
for step in (1, -1):
min_distance = self.cfg.min_distance
max_distance = self.cfg.max_distance
current_index = context_index + step * min_distance
while 0 <= current_index.item() < v:
# Compute overlap.
current_origins, current_directions = get_world_rays(
rearrange(xy, "h w xy -> (h w) xy"),
extrinsics[current_index],
intrinsics[current_index],
)
projection_onto_current = project_rays(
context_origins,
context_directions,
extrinsics[current_index],
intrinsics[current_index],
)
projection_onto_context = project_rays(
current_origins,
current_directions,
extrinsics[context_index],
intrinsics[context_index],
)
overlap_a = projection_onto_context["overlaps_image"].float().mean()
overlap_b = projection_onto_current["overlaps_image"].float().mean()
overlap = min(overlap_a, overlap_b)
delta = (current_index - context_index).abs()
min_overlap = self.cfg.min_overlap
max_overlap = self.cfg.max_overlap
if min_overlap <= overlap <= max_overlap:
valid_indices.append(
(current_index.item(), overlap_a, overlap_b)
)
# Stop once the camera has panned away too much.
if overlap < min_overlap or delta > max_distance:
break
current_index += step
if valid_indices:
# Pick a random valid view. Index the resulting views.
num_options = len(valid_indices)
chosen = torch.randint(
0, num_options, size=tuple(), generator=self.generator
)
chosen, overlap_a, overlap_b = valid_indices[chosen]
context_left = min(chosen, context_index.item())
context_right = max(chosen, context_index.item())
delta = context_right - context_left
# Pick non-repeated random target views.
while True:
target_views = torch.randint(
context_left,
context_right + 1,
(self.cfg.num_target_views,),
generator=self.generator,
)
if (target_views.unique(return_counts=True)[1] == 1).all():
break
target = tuple(sorted(target_views.tolist()))
self.index[scene] = IndexEntry(
context=(context_left, context_right),
target=target,
)
# Optionally, save a preview.
if self.cfg.save_previews:
preview_path = self.cfg.output_path / "previews"
preview_path.mkdir(exist_ok=True, parents=True)
a = batch["target"]["image"][0, chosen]
a = add_label(a, f"Overlap: {overlap_a * 100:.1f}%")
b = batch["target"]["image"][0, context_index]
b = add_label(b, f"Overlap: {overlap_b * 100:.1f}%")
vis = add_border(add_border(hcat(a, b)), 1, 0)
vis = add_label(vis, f"Distance: {delta} frames")
save_image(add_border(vis), preview_path / f"{scene}.png")
break
else:
# This happens if no starting frame produces a valid evaluation example.
self.index[scene] = None
def save_index(self) -> None:
self.cfg.output_path.mkdir(exist_ok=True, parents=True)
with (self.cfg.output_path / "evaluation_index.json").open("w") as f:
json.dump(
{k: None if v is None else asdict(v) for k, v in self.index.items()}, f
)