|
from math import prod |
|
|
|
import torch |
|
from einops import einsum, rearrange, reduce, repeat |
|
from jaxtyping import Bool, Float, Int64 |
|
from torch import Tensor |
|
|
|
|
|
def homogenize_points( |
|
points: Float[Tensor, "*batch dim"], |
|
) -> Float[Tensor, "*batch dim+1"]: |
|
"""Convert batched points (xyz) to (xyz1).""" |
|
return torch.cat([points, torch.ones_like(points[..., :1])], dim=-1) |
|
|
|
|
|
def homogenize_vectors( |
|
vectors: Float[Tensor, "*batch dim"], |
|
) -> Float[Tensor, "*batch dim+1"]: |
|
"""Convert batched vectors (xyz) to (xyz0).""" |
|
return torch.cat([vectors, torch.zeros_like(vectors[..., :1])], dim=-1) |
|
|
|
|
|
def transform_rigid( |
|
homogeneous_coordinates: Float[Tensor, "*#batch dim"], |
|
transformation: Float[Tensor, "*#batch dim dim"], |
|
) -> Float[Tensor, "*batch dim"]: |
|
"""Apply a rigid-body transformation to points or vectors.""" |
|
return einsum(transformation, homogeneous_coordinates, "... i j, ... j -> ... i") |
|
|
|
|
|
def transform_cam2world( |
|
homogeneous_coordinates: Float[Tensor, "*#batch dim"], |
|
extrinsics: Float[Tensor, "*#batch dim dim"], |
|
) -> Float[Tensor, "*batch dim"]: |
|
"""Transform points from 3D camera coordinates to 3D world coordinates.""" |
|
return transform_rigid(homogeneous_coordinates, extrinsics) |
|
|
|
|
|
def transform_world2cam( |
|
homogeneous_coordinates: Float[Tensor, "*#batch dim"], |
|
extrinsics: Float[Tensor, "*#batch dim dim"], |
|
) -> Float[Tensor, "*batch dim"]: |
|
"""Transform points from 3D world coordinates to 3D camera coordinates.""" |
|
return transform_rigid(homogeneous_coordinates, extrinsics.inverse()) |
|
|
|
|
|
def project_camera_space( |
|
points: Float[Tensor, "*#batch dim"], |
|
intrinsics: Float[Tensor, "*#batch dim dim"], |
|
epsilon: float = torch.finfo(torch.float32).eps, |
|
infinity: float = 1e8, |
|
) -> Float[Tensor, "*batch dim-1"]: |
|
points = points / (points[..., -1:] + epsilon) |
|
points = points.nan_to_num(posinf=infinity, neginf=-infinity) |
|
points = einsum(intrinsics, points, "... i j, ... j -> ... i") |
|
return points[..., :-1] |
|
|
|
|
|
def project( |
|
points: Float[Tensor, "*#batch dim"], |
|
extrinsics: Float[Tensor, "*#batch dim+1 dim+1"], |
|
intrinsics: Float[Tensor, "*#batch dim dim"], |
|
epsilon: float = torch.finfo(torch.float32).eps, |
|
) -> tuple[ |
|
Float[Tensor, "*batch dim-1"], |
|
Bool[Tensor, " *batch"], |
|
]: |
|
points = homogenize_points(points) |
|
points = transform_world2cam(points, extrinsics)[..., :-1] |
|
in_front_of_camera = points[..., -1] >= 0 |
|
return project_camera_space(points, intrinsics, epsilon=epsilon), in_front_of_camera |
|
|
|
|
|
def unproject( |
|
coordinates: Float[Tensor, "*#batch dim"], |
|
z: Float[Tensor, "*#batch"], |
|
intrinsics: Float[Tensor, "*#batch dim+1 dim+1"], |
|
) -> Float[Tensor, "*batch dim+1"]: |
|
"""Unproject 2D camera coordinates with the given Z values.""" |
|
|
|
|
|
coordinates = homogenize_points(coordinates) |
|
ray_directions = einsum( |
|
intrinsics.inverse(), coordinates, "... i j, ... j -> ... i" |
|
) |
|
|
|
|
|
return ray_directions * z[..., None] |
|
|
|
|
|
def get_world_rays( |
|
coordinates: Float[Tensor, "*#batch dim"], |
|
extrinsics: Float[Tensor, "*#batch dim+2 dim+2"], |
|
intrinsics: Float[Tensor, "*#batch dim+1 dim+1"], |
|
) -> tuple[ |
|
Float[Tensor, "*batch dim+1"], |
|
Float[Tensor, "*batch dim+1"], |
|
]: |
|
|
|
directions = unproject( |
|
coordinates, |
|
torch.ones_like(coordinates[..., 0]), |
|
intrinsics, |
|
) |
|
directions = directions / directions.norm(dim=-1, keepdim=True) |
|
|
|
|
|
directions = homogenize_vectors(directions) |
|
directions = transform_cam2world(directions, extrinsics)[..., :-1] |
|
|
|
|
|
origins = extrinsics[..., :-1, -1].broadcast_to(directions.shape) |
|
|
|
return origins, directions |
|
|
|
|
|
def get_local_rays( |
|
coordinates: Float[Tensor, "*#batch dim"], |
|
intrinsics: Float[Tensor, "*#batch dim+1 dim+1"], |
|
) -> Float[Tensor, "*batch dim+1"]: |
|
|
|
directions = unproject( |
|
coordinates, |
|
torch.ones_like(coordinates[..., 0]), |
|
intrinsics, |
|
) |
|
directions = directions / directions.norm(dim=-1, keepdim=True) |
|
return directions |
|
|
|
|
|
def sample_image_grid( |
|
shape: tuple[int, ...], |
|
device: torch.device = torch.device("cpu"), |
|
) -> tuple[ |
|
Float[Tensor, "*shape dim"], |
|
Int64[Tensor, "*shape dim"], |
|
]: |
|
"""Get normalized (range 0 to 1) coordinates and integer indices for an image.""" |
|
|
|
|
|
|
|
indices = [torch.arange(length, device=device) for length in shape] |
|
stacked_indices = torch.stack(torch.meshgrid(*indices, indexing="ij"), dim=-1) |
|
|
|
|
|
|
|
coordinates = [(idx + 0.5) / length for idx, length in zip(indices, shape)] |
|
coordinates = reversed(coordinates) |
|
coordinates = torch.stack(torch.meshgrid(*coordinates, indexing="xy"), dim=-1) |
|
|
|
return coordinates, stacked_indices |
|
|
|
|
|
def sample_training_rays( |
|
image: Float[Tensor, "batch view channel ..."], |
|
intrinsics: Float[Tensor, "batch view dim dim"], |
|
extrinsics: Float[Tensor, "batch view dim+1 dim+1"], |
|
num_rays: int, |
|
) -> tuple[ |
|
Float[Tensor, "batch ray dim"], |
|
Float[Tensor, "batch ray dim"], |
|
Float[Tensor, "batch ray 3"], |
|
]: |
|
device = extrinsics.device |
|
b, v, _, *grid_shape = image.shape |
|
|
|
|
|
xy, _ = sample_image_grid(tuple(grid_shape), device) |
|
origins, directions = get_world_rays( |
|
rearrange(xy, "... d -> ... () () d"), |
|
extrinsics, |
|
intrinsics, |
|
) |
|
origins = rearrange(origins, "... b v xy -> b (v ...) xy", b=b, v=v) |
|
directions = rearrange(directions, "... b v xy -> b (v ...) xy", b=b, v=v) |
|
pixels = rearrange(image, "b v c ... -> b (v ...) c") |
|
|
|
|
|
num_possible_rays = v * prod(grid_shape) |
|
ray_indices = torch.randint(num_possible_rays, (b, num_rays), device=device) |
|
batch_indices = repeat(torch.arange(b, device=device), "b -> b n", n=num_rays) |
|
|
|
return ( |
|
origins[batch_indices, ray_indices], |
|
directions[batch_indices, ray_indices], |
|
pixels[batch_indices, ray_indices], |
|
) |
|
|
|
|
|
def intersect_rays( |
|
origins_x: Float[Tensor, "*#batch 3"], |
|
directions_x: Float[Tensor, "*#batch 3"], |
|
origins_y: Float[Tensor, "*#batch 3"], |
|
directions_y: Float[Tensor, "*#batch 3"], |
|
eps: float = 1e-5, |
|
inf: float = 1e10, |
|
) -> Float[Tensor, "*batch 3"]: |
|
"""Compute the least-squares intersection of rays. Uses the math from here: |
|
https://math.stackexchange.com/a/1762491/286022 |
|
""" |
|
|
|
|
|
shape = torch.broadcast_shapes( |
|
origins_x.shape, |
|
directions_x.shape, |
|
origins_y.shape, |
|
directions_y.shape, |
|
) |
|
origins_x = origins_x.broadcast_to(shape) |
|
directions_x = directions_x.broadcast_to(shape) |
|
origins_y = origins_y.broadcast_to(shape) |
|
directions_y = directions_y.broadcast_to(shape) |
|
|
|
|
|
parallel = einsum(directions_x, directions_y, "... xyz, ... xyz -> ...") > 1 - eps |
|
origins_x = origins_x[~parallel] |
|
directions_x = directions_x[~parallel] |
|
origins_y = origins_y[~parallel] |
|
directions_y = directions_y[~parallel] |
|
|
|
|
|
origins = torch.stack([origins_x, origins_y], dim=0) |
|
directions = torch.stack([directions_x, directions_y], dim=0) |
|
dtype = origins.dtype |
|
device = origins.device |
|
|
|
|
|
n = einsum(directions, directions, "r b i, r b j -> r b i j") |
|
n = n - torch.eye(3, dtype=dtype, device=device).broadcast_to((2, 1, 3, 3)) |
|
|
|
|
|
lhs = reduce(n, "r b i j -> b i j", "sum") |
|
|
|
|
|
rhs = einsum(n, origins, "r b i j, r b j -> r b i") |
|
rhs = reduce(rhs, "r b i -> b i", "sum") |
|
|
|
|
|
result = torch.linalg.lstsq(lhs, rhs).solution |
|
|
|
|
|
result_all = torch.ones(shape, dtype=dtype, device=device) * inf |
|
result_all[~parallel] = result |
|
return result_all |
|
|
|
|
|
def get_fov(intrinsics: Float[Tensor, "batch 3 3"]) -> Float[Tensor, "batch 2"]: |
|
intrinsics_inv = intrinsics.inverse() |
|
|
|
def process_vector(vector): |
|
vector = torch.tensor(vector, dtype=torch.float32, device=intrinsics.device) |
|
vector = einsum(intrinsics_inv, vector, "b i j, j -> b i") |
|
return vector / vector.norm(dim=-1, keepdim=True) |
|
|
|
left = process_vector([0, 0.5, 1]) |
|
right = process_vector([1, 0.5, 1]) |
|
top = process_vector([0.5, 0, 1]) |
|
bottom = process_vector([0.5, 1, 1]) |
|
fov_x = (left * right).sum(dim=-1).acos() |
|
fov_y = (top * bottom).sum(dim=-1).acos() |
|
return torch.stack((fov_x, fov_y), dim=-1) |
|
|