|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from copy import copy, deepcopy |
|
|
|
from src.model.encoder.vggt.utils.pose_enc import pose_encoding_to_extri_intri |
|
from src.model.encoder.vggt.utils.rotation import mat_to_quat |
|
from src.utils.point import get_normal_map |
|
|
|
def extri_intri_to_pose_encoding( |
|
extrinsics, |
|
intrinsics, |
|
image_size_hw=None, |
|
pose_encoding_type="absT_quaR_FoV", |
|
): |
|
"""Convert camera extrinsics and intrinsics to a compact pose encoding. |
|
|
|
This function transforms camera parameters into a unified pose encoding format, |
|
which can be used for various downstream tasks like pose prediction or representation. |
|
|
|
Args: |
|
extrinsics (torch.Tensor): Camera extrinsic parameters with shape BxSx3x4, |
|
where B is batch size and S is sequence length. |
|
In OpenCV coordinate system (x-right, y-down, z-forward), representing camera from world transformation. |
|
The format is [R|t] where R is a 3x3 rotation matrix and t is a 3x1 translation vector. |
|
intrinsics (torch.Tensor): Camera intrinsic parameters with shape BxSx3x3. |
|
Defined in pixels, with format: |
|
[[fx, 0, cx], |
|
[0, fy, cy], |
|
[0, 0, 1]] |
|
where fx, fy are focal lengths and (cx, cy) is the principal point |
|
image_size_hw (tuple): Tuple of (height, width) of the image in pixels. |
|
Required for computing field of view values. For example: (256, 512). |
|
pose_encoding_type (str): Type of pose encoding to use. Currently only |
|
supports "absT_quaR_FoV" (absolute translation, quaternion rotation, field of view). |
|
|
|
Returns: |
|
torch.Tensor: Encoded camera pose parameters with shape BxSx9. |
|
For "absT_quaR_FoV" type, the 9 dimensions are: |
|
- [:3] = absolute translation vector T (3D) |
|
- [3:7] = rotation as quaternion quat (4D) |
|
- [7:] = field of view (2D) |
|
""" |
|
|
|
|
|
|
|
|
|
if pose_encoding_type == "absT_quaR_FoV": |
|
R = extrinsics[:, :, :3, :3] |
|
T = extrinsics[:, :, :3, 3] |
|
|
|
quat = mat_to_quat(R) |
|
|
|
|
|
|
|
|
|
fov_h = 2 * torch.atan(0.5 / intrinsics[..., 1, 1]) |
|
fov_w = 2 * torch.atan(0.5 / intrinsics[..., 0, 0]) |
|
pose_encoding = torch.cat([T, quat, fov_h[..., None], fov_w[..., None]], dim=-1).float() |
|
else: |
|
raise NotImplementedError |
|
|
|
return pose_encoding |
|
|
|
def huber_loss(x, y, delta=1.0): |
|
"""Calculate element-wise Huber loss between x and y""" |
|
diff = x - y |
|
abs_diff = diff.abs() |
|
flag = (abs_diff <= delta).to(diff.dtype) |
|
return flag * 0.5 * diff**2 + (1 - flag) * delta * (abs_diff - 0.5 * delta) |
|
|
|
class DistillLoss(nn.Module): |
|
def __init__(self, delta=1.0, gamma=0.6, weight_pose=1.0, weight_depth=1.0, weight_normal=1.0): |
|
super().__init__() |
|
self.delta = delta |
|
self.gamma = gamma |
|
self.weight_pose = weight_pose |
|
self.weight_depth = weight_depth |
|
self.weight_normal = weight_normal |
|
|
|
def camera_loss_single(self, cur_pred_pose_enc, gt_pose_encoding, loss_type="l1"): |
|
if loss_type == "l1": |
|
loss_T = (cur_pred_pose_enc[..., :3] - gt_pose_encoding[..., :3]).abs() |
|
loss_R = (cur_pred_pose_enc[..., 3:7] - gt_pose_encoding[..., 3:7]).abs() |
|
loss_fl = (cur_pred_pose_enc[..., 7:] - gt_pose_encoding[..., 7:]).abs() |
|
elif loss_type == "l2": |
|
loss_T = (cur_pred_pose_enc[..., :3] - gt_pose_encoding[..., :3]).norm(dim=-1, keepdim=True) |
|
loss_R = (cur_pred_pose_enc[..., 3:7] - gt_pose_encoding[..., 3:7]).norm(dim=-1) |
|
loss_fl = (cur_pred_pose_enc[..., 7:] - gt_pose_encoding[..., 7:]).norm(dim=-1) |
|
elif loss_type == "huber": |
|
loss_T = huber_loss(cur_pred_pose_enc[..., :3], gt_pose_encoding[..., :3]) |
|
loss_R = huber_loss(cur_pred_pose_enc[..., 3:7], gt_pose_encoding[..., 3:7]) |
|
loss_fl = huber_loss(cur_pred_pose_enc[..., 7:], gt_pose_encoding[..., 7:]) |
|
else: |
|
raise ValueError(f"Unknown loss type: {loss_type}") |
|
|
|
loss_T = torch.nan_to_num(loss_T, nan=0.0, posinf=0.0, neginf=0.0) |
|
loss_R = torch.nan_to_num(loss_R, nan=0.0, posinf=0.0, neginf=0.0) |
|
loss_fl = torch.nan_to_num(loss_fl, nan=0.0, posinf=0.0, neginf=0.0) |
|
|
|
loss_T = torch.clamp(loss_T, min=-100, max=100) |
|
loss_R = torch.clamp(loss_R, min=-100, max=100) |
|
loss_fl = torch.clamp(loss_fl, min=-100, max=100) |
|
|
|
loss_T = loss_T.mean() |
|
loss_R = loss_R.mean() |
|
loss_fl = loss_fl.mean() |
|
|
|
return loss_T, loss_R, loss_fl |
|
|
|
def forward(self, distill_infos, pred_pose_enc_list, prediction, batch): |
|
loss_pose = 0.0 |
|
|
|
if pred_pose_enc_list is not None: |
|
num_predictions = len(pred_pose_enc_list) |
|
pesudo_gt_pose_enc = distill_infos['pred_pose_enc_list'] |
|
for i in range(num_predictions): |
|
i_weight = self.gamma ** (num_predictions - i - 1) |
|
cur_pred_pose_enc = pred_pose_enc_list[i] |
|
cur_pesudo_gt_pose_enc = pesudo_gt_pose_enc[i] |
|
loss_pose += i_weight * huber_loss(cur_pred_pose_enc, cur_pesudo_gt_pose_enc).mean() |
|
loss_pose = loss_pose / num_predictions |
|
loss_pose = torch.nan_to_num(loss_pose, nan=0.0, posinf=0.0, neginf=0.0) |
|
|
|
pred_depth = prediction.depth.flatten(0, 1) |
|
pesudo_gt_depth = distill_infos['depth_map'].flatten(0, 1).squeeze(-1) |
|
conf_mask = distill_infos['conf_mask'].flatten(0, 1) |
|
|
|
if batch['context']['valid_mask'].sum() > 0: |
|
conf_mask = batch['context']['valid_mask'].flatten(0, 1) |
|
|
|
loss_depth = F.mse_loss(pred_depth[conf_mask], pesudo_gt_depth[conf_mask], reduction='none').mean() |
|
|
|
render_normal = get_normal_map(pred_depth, batch["context"]["intrinsics"].flatten(0, 1)) |
|
pred_normal = get_normal_map(pesudo_gt_depth, batch["context"]["intrinsics"].flatten(0, 1)) |
|
|
|
alpha1_loss = (1 - (render_normal[conf_mask] * pred_normal[conf_mask]).sum(-1)).mean() |
|
alpha2_loss = F.l1_loss(render_normal[conf_mask], pred_normal[conf_mask], reduction='mean') |
|
loss_normal = (alpha1_loss + alpha2_loss) / 2 |
|
|
|
loss_distill = loss_pose * self.weight_pose + loss_depth * self.weight_depth + loss_normal * self.weight_normal |
|
loss_distill = torch.nan_to_num(loss_distill, nan=0.0, posinf=0.0, neginf=0.0) |
|
|
|
loss_dict = { |
|
"loss_distill": loss_distill, |
|
"loss_pose": loss_pose * self.weight_pose, |
|
"loss_depth": loss_depth * self.weight_depth, |
|
"loss_normal": loss_normal * self.weight_normal |
|
} |
|
|
|
return loss_dict |
|
|