|
from copy import deepcopy |
|
from dataclasses import dataclass |
|
from typing import Literal |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from .croco.blocks import DecoderBlock |
|
from .croco.croco import CroCoNet |
|
from .croco.misc import fill_default_args, freeze_all_params, transpose_to_landscape, is_symmetrized, interleave, \ |
|
make_batch_symmetric |
|
from .croco.patch_embed import get_patch_embed |
|
from .backbone import Backbone |
|
from src.geometry.camera_emb import get_intrinsic_embedding |
|
|
|
|
|
inf = float('inf') |
|
|
|
|
|
croco_params = { |
|
'ViTLarge_BaseDecoder': { |
|
'enc_depth': 24, |
|
'dec_depth': 12, |
|
'enc_embed_dim': 1024, |
|
'dec_embed_dim': 768, |
|
'enc_num_heads': 16, |
|
'dec_num_heads': 12, |
|
'pos_embed': 'RoPE100', |
|
'img_size': (512, 512), |
|
}, |
|
} |
|
|
|
default_dust3r_params = { |
|
'enc_depth': 24, |
|
'dec_depth': 12, |
|
'enc_embed_dim': 1024, |
|
'dec_embed_dim': 768, |
|
'enc_num_heads': 16, |
|
'dec_num_heads': 12, |
|
'pos_embed': 'RoPE100', |
|
'patch_embed_cls': 'PatchEmbedDust3R', |
|
'img_size': (512, 512), |
|
'head_type': 'dpt', |
|
'output_mode': 'pts3d', |
|
'depth_mode': ('exp', -inf, inf), |
|
'conf_mode': ('exp', 1, inf) |
|
} |
|
|
|
|
|
@dataclass |
|
class BackboneCrocoCfg: |
|
name: Literal["croco", "croco_multi"] |
|
model: Literal["ViTLarge_BaseDecoder", "ViTBase_SmallDecoder", "ViTBase_BaseDecoder"] |
|
patch_embed_cls: str = 'PatchEmbedDust3R' |
|
asymmetry_decoder: bool = True |
|
intrinsics_embed_loc: Literal["encoder", "decoder", "none"] = 'none' |
|
intrinsics_embed_degree: int = 0 |
|
intrinsics_embed_type: Literal["pixelwise", "linear", "token"] = 'token' |
|
|
|
|
|
class AsymmetricCroCo(CroCoNet): |
|
""" Two siamese encoders, followed by two decoders. |
|
The goal is to output 3d points directly, both images in view1's frame |
|
(hence the asymmetry). |
|
""" |
|
|
|
def __init__(self, cfg: BackboneCrocoCfg, d_in: int) -> None: |
|
|
|
self.intrinsics_embed_loc = cfg.intrinsics_embed_loc |
|
self.intrinsics_embed_degree = cfg.intrinsics_embed_degree |
|
self.intrinsics_embed_type = cfg.intrinsics_embed_type |
|
self.intrinsics_embed_encoder_dim = 0 |
|
self.intrinsics_embed_decoder_dim = 0 |
|
if self.intrinsics_embed_loc == 'encoder' and self.intrinsics_embed_type == 'pixelwise': |
|
self.intrinsics_embed_encoder_dim = (self.intrinsics_embed_degree + 1) ** 2 if self.intrinsics_embed_degree > 0 else 3 |
|
elif self.intrinsics_embed_loc == 'decoder' and self.intrinsics_embed_type == 'pixelwise': |
|
self.intrinsics_embed_decoder_dim = (self.intrinsics_embed_degree + 1) ** 2 if self.intrinsics_embed_degree > 0 else 3 |
|
|
|
self.patch_embed_cls = cfg.patch_embed_cls |
|
self.croco_args = fill_default_args(croco_params[cfg.model], CroCoNet.__init__) |
|
|
|
super().__init__(**croco_params[cfg.model]) |
|
|
|
if cfg.asymmetry_decoder: |
|
self.dec_blocks2 = deepcopy(self.dec_blocks) |
|
|
|
if self.intrinsics_embed_type == 'linear' or self.intrinsics_embed_type == 'token': |
|
self.intrinsic_encoder = nn.Linear(9, 1024) |
|
|
|
|
|
|
|
def _set_patch_embed(self, img_size=224, patch_size=16, enc_embed_dim=768, in_chans=3): |
|
in_chans = in_chans + self.intrinsics_embed_encoder_dim |
|
self.patch_embed = get_patch_embed(self.patch_embed_cls, img_size, patch_size, enc_embed_dim, in_chans) |
|
|
|
def _set_decoder(self, enc_embed_dim, dec_embed_dim, dec_num_heads, dec_depth, mlp_ratio, norm_layer, norm_im2_in_dec): |
|
self.dec_depth = dec_depth |
|
self.dec_embed_dim = dec_embed_dim |
|
|
|
enc_embed_dim = enc_embed_dim + self.intrinsics_embed_decoder_dim |
|
self.decoder_embed = nn.Linear(enc_embed_dim, dec_embed_dim, bias=True) |
|
|
|
self.dec_blocks = nn.ModuleList([ |
|
DecoderBlock(dec_embed_dim, dec_num_heads, mlp_ratio=mlp_ratio, qkv_bias=True, norm_layer=norm_layer, norm_mem=norm_im2_in_dec, rope=self.rope) |
|
for i in range(dec_depth)]) |
|
|
|
self.dec_norm = norm_layer(dec_embed_dim) |
|
|
|
def load_state_dict(self, ckpt, **kw): |
|
|
|
new_ckpt = dict(ckpt) |
|
if not any(k.startswith('dec_blocks2') for k in ckpt): |
|
for key, value in ckpt.items(): |
|
if key.startswith('dec_blocks'): |
|
new_ckpt[key.replace('dec_blocks', 'dec_blocks2')] = value |
|
return super().load_state_dict(new_ckpt, **kw) |
|
|
|
def set_freeze(self, freeze): |
|
assert freeze in ['none', 'mask', 'encoder'], f"unexpected freeze={freeze}" |
|
to_be_frozen = { |
|
'none': [], |
|
'mask': [self.mask_token], |
|
'encoder': [self.mask_token, self.patch_embed, self.enc_blocks], |
|
'encoder_decoder': [self.mask_token, self.patch_embed, self.enc_blocks, self.enc_norm, self.decoder_embed, self.dec_blocks, self.dec_blocks2, self.dec_norm], |
|
} |
|
freeze_all_params(to_be_frozen[freeze]) |
|
|
|
def _set_prediction_head(self, *args, **kwargs): |
|
""" No prediction head """ |
|
return |
|
|
|
def _encode_image(self, image, true_shape, intrinsics_embed=None): |
|
|
|
x, pos = self.patch_embed(image, true_shape=true_shape) |
|
|
|
if intrinsics_embed is not None: |
|
|
|
if self.intrinsics_embed_type == 'linear': |
|
x = x + intrinsics_embed |
|
elif self.intrinsics_embed_type == 'token': |
|
x = torch.cat((x, intrinsics_embed), dim=1) |
|
add_pose = pos[:, 0:1, :].clone() |
|
add_pose[:, :, 0] += (pos[:, -1, 0].unsqueeze(-1) + 1) |
|
pos = torch.cat((pos, add_pose), dim=1) |
|
|
|
|
|
assert self.enc_pos_embed is None |
|
|
|
|
|
for blk in self.enc_blocks: |
|
x = blk(x, pos) |
|
|
|
x = self.enc_norm(x) |
|
return x, pos, None |
|
|
|
def _encode_image_pairs(self, img1, img2, true_shape1, true_shape2, intrinsics_embed1=None, intrinsics_embed2=None): |
|
if img1.shape[-2:] == img2.shape[-2:]: |
|
out, pos, _ = self._encode_image(torch.cat((img1, img2), dim=0), |
|
torch.cat((true_shape1, true_shape2), dim=0), |
|
torch.cat((intrinsics_embed1, intrinsics_embed2), dim=0) if intrinsics_embed1 is not None else None) |
|
out, out2 = out.chunk(2, dim=0) |
|
pos, pos2 = pos.chunk(2, dim=0) |
|
else: |
|
out, pos, _ = self._encode_image(img1, true_shape1, intrinsics_embed1) |
|
out2, pos2, _ = self._encode_image(img2, true_shape2, intrinsics_embed2) |
|
return out, out2, pos, pos2 |
|
|
|
def _encode_symmetrized(self, view1, view2, force_asym=False): |
|
img1 = view1['img'] |
|
img2 = view2['img'] |
|
B = img1.shape[0] |
|
|
|
shape1 = view1.get('true_shape', torch.tensor(img1.shape[-2:])[None].repeat(B, 1)) |
|
shape2 = view2.get('true_shape', torch.tensor(img2.shape[-2:])[None].repeat(B, 1)) |
|
|
|
|
|
intrinsics_embed1 = view1.get('intrinsics_embed', None) |
|
intrinsics_embed2 = view2.get('intrinsics_embed', None) |
|
|
|
if force_asym or not is_symmetrized(view1, view2): |
|
feat1, feat2, pos1, pos2 = self._encode_image_pairs(img1, img2, shape1, shape2, intrinsics_embed1, intrinsics_embed2) |
|
else: |
|
|
|
feat1, feat2, pos1, pos2 = self._encode_image_pairs(img1[::2], img2[::2], shape1[::2], shape2[::2]) |
|
feat1, feat2 = interleave(feat1, feat2) |
|
pos1, pos2 = interleave(pos1, pos2) |
|
|
|
return (shape1, shape2), (feat1, feat2), (pos1, pos2) |
|
|
|
def _decoder(self, f1, pos1, f2, pos2, extra_embed1=None, extra_embed2=None): |
|
final_output = [(f1, f2)] |
|
|
|
if extra_embed1 is not None: |
|
f1 = torch.cat((f1, extra_embed1), dim=-1) |
|
if extra_embed2 is not None: |
|
f2 = torch.cat((f2, extra_embed2), dim=-1) |
|
|
|
|
|
f1 = self.decoder_embed(f1) |
|
f2 = self.decoder_embed(f2) |
|
|
|
final_output.append((f1, f2)) |
|
for blk1, blk2 in zip(self.dec_blocks, self.dec_blocks2): |
|
|
|
f1, _ = blk1(*final_output[-1][::+1], pos1, pos2) |
|
|
|
f2, _ = blk2(*final_output[-1][::-1], pos2, pos1) |
|
|
|
final_output.append((f1, f2)) |
|
|
|
|
|
del final_output[1] |
|
final_output[-1] = tuple(map(self.dec_norm, final_output[-1])) |
|
return zip(*final_output) |
|
|
|
def _downstream_head(self, head_num, decout, img_shape): |
|
B, S, D = decout[-1].shape |
|
|
|
head = getattr(self, f'head{head_num}') |
|
return head(decout, img_shape) |
|
|
|
def forward(self, |
|
context: dict, |
|
symmetrize_batch=False, |
|
return_views=False, |
|
): |
|
b, v, _, h, w = context["image"].shape |
|
device = context["image"].device |
|
|
|
view1, view2 = ({'img': context["image"][:, 0]}, |
|
{'img': context["image"][:, 1]}) |
|
|
|
|
|
if self.intrinsics_embed_loc == 'encoder' and self.intrinsics_embed_type == 'pixelwise': |
|
intrinsic_emb = get_intrinsic_embedding(context, degree=self.intrinsics_embed_degree) |
|
view1['img'] = torch.cat((view1['img'], intrinsic_emb[:, 0]), dim=1) |
|
view2['img'] = torch.cat((view2['img'], intrinsic_emb[:, 1]), dim=1) |
|
|
|
if self.intrinsics_embed_loc == 'encoder' and (self.intrinsics_embed_type == 'token' or self.intrinsics_embed_type == 'linear'): |
|
intrinsic_embedding = self.intrinsic_encoder(context["intrinsics"].flatten(2)) |
|
view1['intrinsics_embed'] = intrinsic_embedding[:, 0].unsqueeze(1) |
|
view2['intrinsics_embed'] = intrinsic_embedding[:, 1].unsqueeze(1) |
|
|
|
if symmetrize_batch: |
|
instance_list_view1, instance_list_view2 = [0 for _ in range(b)], [1 for _ in range(b)] |
|
view1['instance'] = instance_list_view1 |
|
view2['instance'] = instance_list_view2 |
|
view1['idx'] = instance_list_view1 |
|
view2['idx'] = instance_list_view2 |
|
view1, view2 = make_batch_symmetric(view1, view2) |
|
|
|
|
|
(shape1, shape2), (feat1, feat2), (pos1, pos2) = self._encode_symmetrized(view1, view2, force_asym=False) |
|
else: |
|
|
|
(shape1, shape2), (feat1, feat2), (pos1, pos2) = self._encode_symmetrized(view1, view2, force_asym=True) |
|
|
|
if self.intrinsics_embed_loc == 'decoder': |
|
|
|
intrinsic_emb = get_intrinsic_embedding(context, degree=self.intrinsics_embed_degree, downsample=16, merge_hw=True) |
|
dec1, dec2 = self._decoder(feat1, pos1, feat2, pos2, intrinsic_emb[:, 0], intrinsic_emb[:, 1]) |
|
else: |
|
dec1, dec2 = self._decoder(feat1, pos1, feat2, pos2) |
|
|
|
if self.intrinsics_embed_loc == 'encoder' and self.intrinsics_embed_type == 'token': |
|
dec1, dec2 = list(dec1), list(dec2) |
|
for i in range(len(dec1)): |
|
dec1[i] = dec1[i][:, :-1] |
|
dec2[i] = dec2[i][:, :-1] |
|
|
|
if return_views: |
|
return dec1, dec2, shape1, shape2, view1, view2 |
|
return dec1, dec2, shape1, shape2 |
|
|
|
@property |
|
def patch_size(self) -> int: |
|
return 16 |
|
|
|
@property |
|
def d_out(self) -> int: |
|
return 1024 |
|
|