|
import functools |
|
from dataclasses import dataclass |
|
from typing import Literal |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torchvision |
|
from einops import rearrange |
|
from jaxtyping import Float |
|
from torch import Tensor, nn |
|
from torchvision.models import ResNet |
|
|
|
from src.dataset.types import BatchedViews |
|
from .backbone import Backbone |
|
|
|
|
|
@dataclass |
|
class BackboneResnetCfg: |
|
name: Literal["resnet"] |
|
model: Literal[ |
|
"resnet18", "resnet34", "resnet50", "resnet101", "resnet152", "dino_resnet50" |
|
] |
|
num_layers: int |
|
use_first_pool: bool |
|
d_out: int |
|
|
|
|
|
class BackboneResnet(Backbone[BackboneResnetCfg]): |
|
model: ResNet |
|
|
|
def __init__(self, cfg: BackboneResnetCfg, d_in: int) -> None: |
|
super().__init__(cfg) |
|
|
|
assert d_in == 3 |
|
|
|
norm_layer = functools.partial( |
|
nn.InstanceNorm2d, |
|
affine=False, |
|
track_running_stats=False, |
|
) |
|
|
|
if cfg.model == "dino_resnet50": |
|
self.model = torch.hub.load("facebookresearch/dino:main", "dino_resnet50") |
|
else: |
|
self.model = getattr(torchvision.models, cfg.model)(norm_layer=norm_layer) |
|
|
|
|
|
self.projections = nn.ModuleDict({}) |
|
for index in range(1, cfg.num_layers): |
|
key = f"layer{index}" |
|
block = getattr(self.model, key) |
|
conv_index = 1 |
|
try: |
|
while True: |
|
d_layer_out = getattr(block[-1], f"conv{conv_index}").out_channels |
|
conv_index += 1 |
|
except AttributeError: |
|
pass |
|
self.projections[key] = nn.Conv2d(d_layer_out, cfg.d_out, 1) |
|
|
|
|
|
self.projections["layer0"] = nn.Conv2d( |
|
self.model.conv1.out_channels, cfg.d_out, 1 |
|
) |
|
|
|
def forward( |
|
self, |
|
context: BatchedViews, |
|
) -> Float[Tensor, "batch view d_out height width"]: |
|
|
|
b, v, _, h, w = context["image"].shape |
|
x = rearrange(context["image"], "b v c h w -> (b v) c h w") |
|
|
|
|
|
x = self.model.conv1(x) |
|
x = self.model.bn1(x) |
|
x = self.model.relu(x) |
|
features = [self.projections["layer0"](x)] |
|
|
|
|
|
for index in range(1, self.cfg.num_layers): |
|
key = f"layer{index}" |
|
if index == 0 and self.cfg.use_first_pool: |
|
x = self.model.maxpool(x) |
|
x = getattr(self.model, key)(x) |
|
features.append(self.projections[key](x)) |
|
|
|
|
|
features = [ |
|
F.interpolate(f, (h, w), mode="bilinear", align_corners=True) |
|
for f in features |
|
] |
|
features = torch.stack(features).sum(dim=0) |
|
|
|
|
|
return rearrange(features, "(b v) c h w -> b v c h w", b=b, v=v) |
|
|
|
@property |
|
def d_out(self) -> int: |
|
return self.cfg.d_out |
|
|