|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
def position_grid_to_embed(pos_grid: torch.Tensor, embed_dim: int, omega_0: float = 100) -> torch.Tensor: |
|
""" |
|
Convert 2D position grid (HxWx2) to sinusoidal embeddings (HxWxC) |
|
|
|
Args: |
|
pos_grid: Tensor of shape (H, W, 2) containing 2D coordinates |
|
embed_dim: Output channel dimension for embeddings |
|
|
|
Returns: |
|
Tensor of shape (H, W, embed_dim) with positional embeddings |
|
""" |
|
H, W, grid_dim = pos_grid.shape |
|
assert grid_dim == 2 |
|
pos_flat = pos_grid.reshape(-1, grid_dim) |
|
|
|
|
|
emb_x = make_sincos_pos_embed(embed_dim // 2, pos_flat[:, 0], omega_0=omega_0) |
|
emb_y = make_sincos_pos_embed(embed_dim // 2, pos_flat[:, 1], omega_0=omega_0) |
|
|
|
|
|
emb = torch.cat([emb_x, emb_y], dim=-1) |
|
|
|
return emb.view(H, W, embed_dim) |
|
|
|
|
|
def make_sincos_pos_embed(embed_dim: int, pos: torch.Tensor, omega_0: float = 100) -> torch.Tensor: |
|
""" |
|
This function generates a 1D positional embedding from a given grid using sine and cosine functions. |
|
|
|
Args: |
|
- embed_dim: The embedding dimension. |
|
- pos: The position to generate the embedding from. |
|
|
|
Returns: |
|
- emb: The generated 1D positional embedding. |
|
""" |
|
assert embed_dim % 2 == 0 |
|
omega = torch.arange(embed_dim // 2, dtype=torch.double, device=pos.device) |
|
omega /= embed_dim / 2.0 |
|
omega = 1.0 / omega_0**omega |
|
|
|
pos = pos.reshape(-1) |
|
out = torch.einsum("m,d->md", pos, omega) |
|
|
|
emb_sin = torch.sin(out) |
|
emb_cos = torch.cos(out) |
|
|
|
emb = torch.cat([emb_sin, emb_cos], dim=1) |
|
return emb.float() |
|
|
|
|
|
|
|
|
|
|
|
def create_uv_grid( |
|
width: int, height: int, aspect_ratio: float = None, dtype: torch.dtype = None, device: torch.device = None |
|
) -> torch.Tensor: |
|
""" |
|
Create a normalized UV grid of shape (width, height, 2). |
|
|
|
The grid spans horizontally and vertically according to an aspect ratio, |
|
ensuring the top-left corner is at (-x_span, -y_span) and the bottom-right |
|
corner is at (x_span, y_span), normalized by the diagonal of the plane. |
|
|
|
Args: |
|
width (int): Number of points horizontally. |
|
height (int): Number of points vertically. |
|
aspect_ratio (float, optional): Width-to-height ratio. Defaults to width/height. |
|
dtype (torch.dtype, optional): Data type of the resulting tensor. |
|
device (torch.device, optional): Device on which the tensor is created. |
|
|
|
Returns: |
|
torch.Tensor: A (width, height, 2) tensor of UV coordinates. |
|
""" |
|
|
|
if aspect_ratio is None: |
|
aspect_ratio = float(width) / float(height) |
|
|
|
|
|
diag_factor = (aspect_ratio**2 + 1.0) ** 0.5 |
|
span_x = aspect_ratio / diag_factor |
|
span_y = 1.0 / diag_factor |
|
|
|
|
|
left_x = -span_x * (width - 1) / width |
|
right_x = span_x * (width - 1) / width |
|
top_y = -span_y * (height - 1) / height |
|
bottom_y = span_y * (height - 1) / height |
|
|
|
|
|
x_coords = torch.linspace(left_x, right_x, steps=width, dtype=dtype, device=device) |
|
y_coords = torch.linspace(top_y, bottom_y, steps=height, dtype=dtype, device=device) |
|
|
|
|
|
uu, vv = torch.meshgrid(x_coords, y_coords, indexing="xy") |
|
uv_grid = torch.stack((uu, vv), dim=-1) |
|
|
|
return uv_grid |
|
|