|
|
|
|
|
|
|
|
|
|
|
|
|
import cv2 |
|
import torch |
|
import numpy as np |
|
import os |
|
|
|
|
|
def color_from_xy(x, y, W, H, cmap_name="hsv"): |
|
""" |
|
Map (x, y) -> color in (R, G, B). |
|
1) Normalize x,y to [0,1]. |
|
2) Combine them into a single scalar c in [0,1]. |
|
3) Use matplotlib's colormap to convert c -> (R,G,B). |
|
|
|
You can customize step 2, e.g., c = (x + y)/2, or some function of (x, y). |
|
""" |
|
import matplotlib.cm |
|
import matplotlib.colors |
|
|
|
x_norm = x / max(W - 1, 1) |
|
y_norm = y / max(H - 1, 1) |
|
|
|
c = (x_norm + y_norm) / 2.0 |
|
|
|
cmap = matplotlib.cm.get_cmap(cmap_name) |
|
|
|
rgba = cmap(c) |
|
r, g, b = rgba[0], rgba[1], rgba[2] |
|
return (r, g, b) |
|
|
|
|
|
def get_track_colors_by_position(tracks_b, vis_mask_b=None, image_width=None, image_height=None, cmap_name="hsv"): |
|
""" |
|
Given all tracks in one sample (b), compute a (N,3) array of RGB color values |
|
in [0,255]. The color is determined by the (x,y) position in the first |
|
visible frame for each track. |
|
|
|
Args: |
|
tracks_b: Tensor of shape (S, N, 2). (x,y) for each track in each frame. |
|
vis_mask_b: (S, N) boolean mask; if None, assume all are visible. |
|
image_width, image_height: used for normalizing (x, y). |
|
cmap_name: for matplotlib (e.g., 'hsv', 'rainbow', 'jet'). |
|
|
|
Returns: |
|
track_colors: np.ndarray of shape (N, 3), each row is (R,G,B) in [0,255]. |
|
""" |
|
S, N, _ = tracks_b.shape |
|
track_colors = np.zeros((N, 3), dtype=np.uint8) |
|
|
|
if vis_mask_b is None: |
|
|
|
vis_mask_b = torch.ones(S, N, dtype=torch.bool, device=tracks_b.device) |
|
|
|
for i in range(N): |
|
|
|
visible_frames = torch.where(vis_mask_b[:, i])[0] |
|
if len(visible_frames) == 0: |
|
|
|
track_colors[i] = (0, 0, 0) |
|
continue |
|
|
|
first_s = int(visible_frames[0].item()) |
|
|
|
x, y = tracks_b[first_s, i].tolist() |
|
|
|
|
|
r, g, b = color_from_xy(x, y, W=image_width, H=image_height, cmap_name=cmap_name) |
|
|
|
r, g, b = int(r * 255), int(g * 255), int(b * 255) |
|
track_colors[i] = (r, g, b) |
|
|
|
return track_colors |
|
|
|
|
|
def visualize_tracks_on_images( |
|
images, |
|
tracks, |
|
track_vis_mask=None, |
|
out_dir="track_visuals_concat_by_xy", |
|
image_format="CHW", |
|
normalize_mode="[0,1]", |
|
cmap_name="hsv", |
|
frames_per_row=4, |
|
save_grid=True, |
|
): |
|
""" |
|
Visualizes frames in a grid layout with specified frames per row. |
|
Each track's color is determined by its (x,y) position |
|
in the first visible frame (or frame 0 if always visible). |
|
Finally convert the BGR result to RGB before saving. |
|
Also saves each individual frame as a separate PNG file. |
|
|
|
Args: |
|
images: torch.Tensor (S, 3, H, W) if CHW or (S, H, W, 3) if HWC. |
|
tracks: torch.Tensor (S, N, 2), last dim = (x, y). |
|
track_vis_mask: torch.Tensor (S, N) or None. |
|
out_dir: folder to save visualizations. |
|
image_format: "CHW" or "HWC". |
|
normalize_mode: "[0,1]", "[-1,1]", or None for direct raw -> 0..255 |
|
cmap_name: a matplotlib colormap name for color_from_xy. |
|
frames_per_row: number of frames to display in each row of the grid. |
|
save_grid: whether to save all frames in one grid image. |
|
|
|
Returns: |
|
None (saves images in out_dir). |
|
""" |
|
|
|
if len(tracks.shape) == 4: |
|
tracks = tracks.squeeze(0) |
|
images = images.squeeze(0) |
|
if track_vis_mask is not None: |
|
track_vis_mask = track_vis_mask.squeeze(0) |
|
|
|
import matplotlib |
|
|
|
matplotlib.use("Agg") |
|
|
|
os.makedirs(out_dir, exist_ok=True) |
|
|
|
S = images.shape[0] |
|
_, N, _ = tracks.shape |
|
|
|
|
|
images = images.cpu().clone() |
|
tracks = tracks.cpu().clone() |
|
if track_vis_mask is not None: |
|
track_vis_mask = track_vis_mask.cpu().clone() |
|
|
|
|
|
if image_format == "CHW": |
|
|
|
H, W = images.shape[2], images.shape[3] |
|
else: |
|
|
|
H, W = images.shape[1], images.shape[2] |
|
|
|
|
|
track_colors_rgb = get_track_colors_by_position( |
|
tracks, |
|
vis_mask_b=track_vis_mask if track_vis_mask is not None else None, |
|
image_width=W, |
|
image_height=H, |
|
cmap_name=cmap_name, |
|
) |
|
|
|
|
|
frame_images = [] |
|
|
|
for s in range(S): |
|
|
|
img = images[s] |
|
|
|
|
|
if image_format == "CHW": |
|
img = img.permute(1, 2, 0) |
|
|
|
|
|
img = img.numpy().astype(np.float32) |
|
|
|
|
|
if normalize_mode == "[0,1]": |
|
img = np.clip(img, 0, 1) * 255.0 |
|
elif normalize_mode == "[-1,1]": |
|
img = (img + 1.0) * 0.5 * 255.0 |
|
img = np.clip(img, 0, 255.0) |
|
|
|
|
|
|
|
img = img.astype(np.uint8) |
|
|
|
|
|
img_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) |
|
|
|
|
|
cur_tracks = tracks[s] |
|
if track_vis_mask is not None: |
|
valid_indices = torch.where(track_vis_mask[s])[0] |
|
else: |
|
valid_indices = range(N) |
|
|
|
cur_tracks_np = cur_tracks.numpy() |
|
for i in valid_indices: |
|
x, y = cur_tracks_np[i] |
|
pt = (int(round(x)), int(round(y))) |
|
|
|
|
|
R, G, B = track_colors_rgb[i] |
|
color_bgr = (int(B), int(G), int(R)) |
|
cv2.circle(img_bgr, pt, radius=3, color=color_bgr, thickness=-1) |
|
|
|
|
|
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB) |
|
|
|
|
|
frame_path = os.path.join(out_dir, f"frame_{s:04d}.png") |
|
|
|
frame_bgr = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2BGR) |
|
cv2.imwrite(frame_path, frame_bgr) |
|
|
|
frame_images.append(img_rgb) |
|
|
|
|
|
if save_grid: |
|
|
|
num_rows = (S + frames_per_row - 1) // frames_per_row |
|
|
|
|
|
grid_img = None |
|
for row in range(num_rows): |
|
start_idx = row * frames_per_row |
|
end_idx = min(start_idx + frames_per_row, S) |
|
|
|
|
|
row_img = np.concatenate(frame_images[start_idx:end_idx], axis=1) |
|
|
|
|
|
if end_idx - start_idx < frames_per_row: |
|
padding_width = (frames_per_row - (end_idx - start_idx)) * W |
|
padding = np.zeros((H, padding_width, 3), dtype=np.uint8) |
|
row_img = np.concatenate([row_img, padding], axis=1) |
|
|
|
|
|
if grid_img is None: |
|
grid_img = row_img |
|
else: |
|
grid_img = np.concatenate([grid_img, row_img], axis=0) |
|
|
|
out_path = os.path.join(out_dir, "tracks_grid.png") |
|
|
|
grid_img_bgr = cv2.cvtColor(grid_img, cv2.COLOR_RGB2BGR) |
|
cv2.imwrite(out_path, grid_img_bgr) |
|
print(f"[INFO] Saved color-by-XY track visualization grid -> {out_path}") |
|
|
|
print(f"[INFO] Saved {S} individual frames to {out_dir}/frame_*.png") |
|
|