|
from pathlib import Path |
|
from random import randrange |
|
from typing import Optional |
|
|
|
import numpy as np |
|
import torch |
|
import wandb |
|
from einops import rearrange, reduce, repeat |
|
from jaxtyping import Bool, Float |
|
from torch import Tensor |
|
|
|
from ....dataset.types import BatchedViews |
|
from ....misc.heterogeneous_pairings import generate_heterogeneous_index |
|
from ....visualization.annotation import add_label |
|
from ....visualization.color_map import apply_color_map, apply_color_map_to_image |
|
from ....visualization.colors import get_distinct_color |
|
from ....visualization.drawing.lines import draw_lines |
|
from ....visualization.drawing.points import draw_points |
|
from ....visualization.layout import add_border, hcat, vcat |
|
from ...ply_export import export_ply |
|
from .encoder_visualizer import EncoderVisualizer |
|
from .encoder_visualizer_epipolar_cfg import EncoderVisualizerEpipolarCfg |
|
|
|
|
|
def box( |
|
image: Float[Tensor, "3 height width"], |
|
) -> Float[Tensor, "3 new_height new_width"]: |
|
return add_border(add_border(image), 1, 0) |
|
|
|
|
|
class EncoderVisualizerEpipolar( |
|
EncoderVisualizer[EncoderVisualizerEpipolarCfg, EncoderEpipolar] |
|
): |
|
def visualize( |
|
self, |
|
context: BatchedViews, |
|
global_step: int, |
|
) -> dict[str, Float[Tensor, "3 _ _"]]: |
|
|
|
if self.encoder.epipolar_transformer is None: |
|
return {} |
|
|
|
visualization_dump = {} |
|
|
|
softmax_weights = [] |
|
|
|
def hook(module, input, output): |
|
softmax_weights.append(output) |
|
|
|
|
|
handles = [ |
|
layer[0].fn.attend.register_forward_hook(hook) |
|
for layer in self.encoder.epipolar_transformer.transformer.layers |
|
] |
|
|
|
result = self.encoder.forward( |
|
context, |
|
global_step, |
|
visualization_dump=visualization_dump, |
|
deterministic=True, |
|
) |
|
|
|
|
|
for handle in handles: |
|
handle.remove() |
|
|
|
softmax_weights = torch.stack(softmax_weights) |
|
|
|
|
|
context_images = context["image"] |
|
_, _, _, h, w = context_images.shape |
|
length = min(h, w) |
|
min_resolution = self.cfg.min_resolution |
|
scale_multiplier = (min_resolution + length - 1) // length |
|
if scale_multiplier > 1: |
|
context_images = repeat( |
|
context_images, |
|
"b v c h w -> b v c (h rh) (w rw)", |
|
rh=scale_multiplier, |
|
rw=scale_multiplier, |
|
) |
|
|
|
|
|
if self.cfg.export_ply and wandb.run is not None: |
|
name = wandb.run._name.split(" ")[0] |
|
ply_path = Path(f"outputs/gaussians/{name}/{global_step:0>6}.ply") |
|
export_ply( |
|
context["extrinsics"][0, 0], |
|
result.means[0], |
|
visualization_dump["scales"][0], |
|
visualization_dump["rotations"][0], |
|
result.harmonics[0], |
|
result.opacities[0], |
|
ply_path, |
|
) |
|
|
|
return { |
|
|
|
|
|
|
|
|
|
|
|
"epipolar_samples": self.visualize_epipolar_samples( |
|
context_images, |
|
visualization_dump["sampling"], |
|
), |
|
"epipolar_color_samples": self.visualize_epipolar_color_samples( |
|
context_images, |
|
context, |
|
), |
|
"gaussians": self.visualize_gaussians( |
|
context["image"], |
|
result.opacities, |
|
result.covariances, |
|
result.harmonics[..., 0], |
|
), |
|
"overlaps": self.visualize_overlaps( |
|
context["image"], |
|
visualization_dump["sampling"], |
|
visualization_dump.get("is_monocular", None), |
|
), |
|
"depth": self.visualize_depth( |
|
context, |
|
visualization_dump["depth"], |
|
), |
|
} |
|
|
|
def visualize_attention( |
|
self, |
|
context_images: Float[Tensor, "batch view 3 height width"], |
|
sampling: EpipolarSampling, |
|
attention: Float[Tensor, "layer bvr head 1 sample"], |
|
) -> Float[Tensor, "3 vis_height vis_width"]: |
|
device = context_images.device |
|
|
|
|
|
b, v, ov, r, s, _ = sampling.xy_sample.shape |
|
rb = randrange(b) |
|
rv = randrange(v) |
|
rov = randrange(ov) |
|
num_samples = self.cfg.num_samples |
|
rr = np.random.choice(r, num_samples, replace=False) |
|
rr = torch.tensor(rr, dtype=torch.int64, device=device) |
|
|
|
|
|
ray_view = draw_points( |
|
context_images[rb, rv], |
|
sampling.xy_ray[rb, rv, rr], |
|
0, |
|
radius=4, |
|
x_range=(0, 1), |
|
y_range=(0, 1), |
|
) |
|
ray_view = draw_points( |
|
ray_view, |
|
sampling.xy_ray[rb, rv, rr], |
|
[get_distinct_color(i) for i, _ in enumerate(rr)], |
|
radius=3, |
|
x_range=(0, 1), |
|
y_range=(0, 1), |
|
) |
|
|
|
|
|
attention = rearrange( |
|
attention, "l (b v r) hd () s -> l b v r hd s", b=b, v=v, r=r |
|
) |
|
attention = attention[:, rb, rv, rr, :, :] |
|
num_layers, _, hd, _ = attention.shape |
|
|
|
vis = [] |
|
for il in range(num_layers): |
|
vis_layer = [] |
|
for ihd in range(hd): |
|
|
|
color = [get_distinct_color(i) for i, _ in enumerate(rr)] |
|
color = torch.tensor(color, device=attention.device) |
|
color = rearrange(color, "r c -> r () c") |
|
attn = rearrange(attention[il, :, ihd], "r s -> r s ()") |
|
color = rearrange(attn * color, "r s c -> (r s ) c") |
|
|
|
|
|
vis_layer_head = draw_lines( |
|
context_images[rb, self.encoder.sampler.index_v[rv, rov]], |
|
rearrange( |
|
sampling.xy_sample_near[rb, rv, rov, rr], "r s xy -> (r s) xy" |
|
), |
|
rearrange( |
|
sampling.xy_sample_far[rb, rv, rov, rr], "r s xy -> (r s) xy" |
|
), |
|
color, |
|
3, |
|
cap="butt", |
|
x_range=(0, 1), |
|
y_range=(0, 1), |
|
) |
|
vis_layer.append(vis_layer_head) |
|
vis.append(add_label(vcat(*vis_layer), f"Layer {il}")) |
|
vis = add_label(add_border(add_border(hcat(*vis)), 1, 0), "Keys & Values") |
|
vis = add_border(hcat(add_label(ray_view), vis, align="top")) |
|
return vis |
|
|
|
def visualize_depth( |
|
self, |
|
context: BatchedViews, |
|
multi_depth: Float[Tensor, "batch view height width surface spp"], |
|
) -> Float[Tensor, "3 vis_width vis_height"]: |
|
multi_vis = [] |
|
*_, srf, _ = multi_depth.shape |
|
for i in range(srf): |
|
depth = multi_depth[..., i, :] |
|
depth = depth.mean(dim=-1) |
|
|
|
|
|
near = rearrange(context["near"], "b v -> b v () ()") |
|
far = rearrange(context["far"], "b v -> b v () ()") |
|
relative_depth = (depth - near) / (far - near) |
|
relative_disparity = 1 - (1 / depth - 1 / far) / (1 / near - 1 / far) |
|
|
|
relative_depth = apply_color_map_to_image(relative_depth, "turbo") |
|
relative_depth = vcat(*[hcat(*x) for x in relative_depth]) |
|
relative_depth = add_label(relative_depth, "Depth") |
|
relative_disparity = apply_color_map_to_image(relative_disparity, "turbo") |
|
relative_disparity = vcat(*[hcat(*x) for x in relative_disparity]) |
|
relative_disparity = add_label(relative_disparity, "Disparity") |
|
multi_vis.append(add_border(hcat(relative_depth, relative_disparity))) |
|
|
|
return add_border(vcat(*multi_vis)) |
|
|
|
def visualize_overlaps( |
|
self, |
|
context_images: Float[Tensor, "batch view 3 height width"], |
|
sampling: EpipolarSampling, |
|
is_monocular: Optional[Bool[Tensor, "batch view height width"]] = None, |
|
) -> Float[Tensor, "3 vis_width vis_height"]: |
|
device = context_images.device |
|
b, v, _, h, w = context_images.shape |
|
green = torch.tensor([0.235, 0.706, 0.294], device=device)[..., None, None] |
|
rb = randrange(b) |
|
valid = sampling.valid[rb].float() |
|
ds = self.encoder.cfg.epipolar_transformer.downscale |
|
valid = repeat( |
|
valid, |
|
"v ov (h w) -> v ov c (h rh) (w rw)", |
|
c=3, |
|
h=h // ds, |
|
w=w // ds, |
|
rh=ds, |
|
rw=ds, |
|
) |
|
|
|
if is_monocular is not None: |
|
is_monocular = is_monocular[rb].float() |
|
is_monocular = repeat(is_monocular, "v h w -> v c h w", c=3, h=h, w=w) |
|
|
|
|
|
context_images = context_images[rb] |
|
index, _ = generate_heterogeneous_index(v) |
|
valid = valid * (green + context_images[index]) / 2 |
|
|
|
vis = vcat(*(hcat(im, hcat(*v)) for im, v in zip(context_images, valid))) |
|
vis = add_label(vis, "Context Overlaps") |
|
|
|
if is_monocular is not None: |
|
vis = hcat(vis, add_label(vcat(*is_monocular), "Monocular?")) |
|
|
|
return add_border(vis) |
|
|
|
def visualize_gaussians( |
|
self, |
|
context_images: Float[Tensor, "batch view 3 height width"], |
|
opacities: Float[Tensor, "batch vrspp"], |
|
covariances: Float[Tensor, "batch vrspp 3 3"], |
|
colors: Float[Tensor, "batch vrspp 3"], |
|
) -> Float[Tensor, "3 vis_height vis_width"]: |
|
b, v, _, h, w = context_images.shape |
|
rb = randrange(b) |
|
context_images = context_images[rb] |
|
opacities = repeat( |
|
opacities[rb], "(v h w spp) -> spp v c h w", v=v, c=3, h=h, w=w |
|
) |
|
colors = rearrange(colors[rb], "(v h w spp) c -> spp v c h w", v=v, h=h, w=w) |
|
|
|
|
|
det = covariances[rb].det() |
|
det = apply_color_map(det / det.max(), "inferno") |
|
det = rearrange(det, "(v h w spp) c -> spp v c h w", v=v, h=h, w=w) |
|
|
|
return add_border( |
|
hcat( |
|
add_label(box(hcat(*context_images)), "Context"), |
|
add_label(box(vcat(*[hcat(*x) for x in opacities])), "Opacities"), |
|
add_label( |
|
box(vcat(*[hcat(*x) for x in (colors * opacities)])), "Colors" |
|
), |
|
add_label(box(vcat(*[hcat(*x) for x in colors])), "Colors (Raw)"), |
|
add_label(box(vcat(*[hcat(*x) for x in det])), "Determinant"), |
|
) |
|
) |
|
|
|
def visualize_probabilities( |
|
self, |
|
context_images: Float[Tensor, "batch view 3 height width"], |
|
sampling: EpipolarSampling, |
|
pdf: Float[Tensor, "batch view ray sample"], |
|
) -> Float[Tensor, "3 vis_height vis_width"]: |
|
device = context_images.device |
|
|
|
|
|
b, v, ov, r, _, _ = sampling.xy_sample.shape |
|
rb = randrange(b) |
|
rv = randrange(v) |
|
rov = randrange(ov) |
|
num_samples = self.cfg.num_samples |
|
rr = np.random.choice(r, num_samples, replace=False) |
|
rr = torch.tensor(rr, dtype=torch.int64, device=device) |
|
colors = [get_distinct_color(i) for i, _ in enumerate(rr)] |
|
colors = torch.tensor(colors, dtype=torch.float32, device=device) |
|
|
|
|
|
ray_view = draw_points( |
|
context_images[rb, rv], |
|
sampling.xy_ray[rb, rv, rr], |
|
0, |
|
radius=4, |
|
x_range=(0, 1), |
|
y_range=(0, 1), |
|
) |
|
ray_view = draw_points( |
|
ray_view, |
|
sampling.xy_ray[rb, rv, rr], |
|
colors, |
|
radius=3, |
|
x_range=(0, 1), |
|
y_range=(0, 1), |
|
) |
|
|
|
|
|
pdf = pdf[rb, rv, rr] |
|
pdf = rearrange(pdf, "r s -> r s ()") |
|
colors = rearrange(colors, "r c -> r () c") |
|
sample_view = draw_lines( |
|
context_images[rb, self.encoder.sampler.index_v[rv, rov]], |
|
rearrange(sampling.xy_sample_near[rb, rv, rov, rr], "r s xy -> (r s) xy"), |
|
rearrange(sampling.xy_sample_far[rb, rv, rov, rr], "r s xy -> (r s) xy"), |
|
rearrange(pdf * colors, "r s c -> (r s) c"), |
|
6, |
|
cap="butt", |
|
x_range=(0, 1), |
|
y_range=(0, 1), |
|
) |
|
|
|
|
|
pdf_magnified = pdf / reduce(pdf, "r s () -> r () ()", "max") |
|
sample_view_magnified = draw_lines( |
|
context_images[rb, self.encoder.sampler.index_v[rv, rov]], |
|
rearrange(sampling.xy_sample_near[rb, rv, rov, rr], "r s xy -> (r s) xy"), |
|
rearrange(sampling.xy_sample_far[rb, rv, rov, rr], "r s xy -> (r s) xy"), |
|
rearrange(pdf_magnified * colors, "r s c -> (r s) c"), |
|
6, |
|
cap="butt", |
|
x_range=(0, 1), |
|
y_range=(0, 1), |
|
) |
|
|
|
return add_border( |
|
hcat( |
|
add_label(ray_view, "Rays"), |
|
add_label(sample_view, "Samples"), |
|
add_label(sample_view_magnified, "Samples (Magnified PDF)"), |
|
) |
|
) |
|
|
|
def visualize_epipolar_samples( |
|
self, |
|
context_images: Float[Tensor, "batch view 3 height width"], |
|
sampling: EpipolarSampling, |
|
) -> Float[Tensor, "3 vis_height vis_width"]: |
|
device = context_images.device |
|
|
|
|
|
b, v, ov, r, s, _ = sampling.xy_sample.shape |
|
rb = randrange(b) |
|
rv = randrange(v) |
|
rov = randrange(ov) |
|
num_samples = self.cfg.num_samples |
|
rr = np.random.choice(r, num_samples, replace=False) |
|
rr = torch.tensor(rr, dtype=torch.int64, device=device) |
|
|
|
|
|
ray_view = draw_points( |
|
context_images[rb, rv], |
|
sampling.xy_ray[rb, rv, rr], |
|
0, |
|
radius=4, |
|
x_range=(0, 1), |
|
y_range=(0, 1), |
|
) |
|
ray_view = draw_points( |
|
ray_view, |
|
sampling.xy_ray[rb, rv, rr], |
|
[get_distinct_color(i) for i, _ in enumerate(rr)], |
|
radius=3, |
|
x_range=(0, 1), |
|
y_range=(0, 1), |
|
) |
|
|
|
|
|
|
|
sample_view = draw_lines( |
|
context_images[rb, self.encoder.sampler.index_v[rv, rov]], |
|
sampling.xy_sample_near[rb, rv, rov, rr, 0], |
|
sampling.xy_sample_far[rb, rv, rov, rr, -1], |
|
0, |
|
5, |
|
cap="butt", |
|
x_range=(0, 1), |
|
y_range=(0, 1), |
|
) |
|
|
|
|
|
color = repeat( |
|
torch.tensor([0, 1], device=device), |
|
"ab -> r (s ab) c", |
|
r=len(rr), |
|
s=(s + 1) // 2, |
|
c=3, |
|
) |
|
color = rearrange(color[:, :s], "r s c -> (r s) c") |
|
|
|
|
|
sample_view = draw_lines( |
|
sample_view, |
|
rearrange(sampling.xy_sample_near[rb, rv, rov, rr], "r s xy -> (r s) xy"), |
|
rearrange(sampling.xy_sample_far[rb, rv, rov, rr], "r s xy -> (r s) xy"), |
|
color, |
|
3, |
|
cap="butt", |
|
x_range=(0, 1), |
|
y_range=(0, 1), |
|
) |
|
|
|
|
|
sample_view = draw_points( |
|
sample_view, |
|
rearrange(sampling.xy_sample[rb, rv, rov, rr], "r s xy -> (r s) xy"), |
|
0, |
|
radius=4, |
|
x_range=(0, 1), |
|
y_range=(0, 1), |
|
) |
|
sample_view = draw_points( |
|
sample_view, |
|
rearrange(sampling.xy_sample[rb, rv, rov, rr], "r s xy -> (r s) xy"), |
|
[get_distinct_color(i // s) for i in range(s * len(rr))], |
|
radius=3, |
|
x_range=(0, 1), |
|
y_range=(0, 1), |
|
) |
|
|
|
return add_border( |
|
hcat(add_label(ray_view, "Ray View"), add_label(sample_view, "Sample View")) |
|
) |
|
|
|
def visualize_epipolar_color_samples( |
|
self, |
|
context_images: Float[Tensor, "batch view 3 height width"], |
|
context: BatchedViews, |
|
) -> Float[Tensor, "3 vis_height vis_width"]: |
|
device = context_images.device |
|
|
|
sampling = self.encoder.sampler( |
|
context["image"], |
|
context["extrinsics"], |
|
context["intrinsics"], |
|
context["near"], |
|
context["far"], |
|
) |
|
|
|
|
|
b, v, ov, r, s, _ = sampling.xy_sample.shape |
|
rb = randrange(b) |
|
rv = randrange(v) |
|
rov = randrange(ov) |
|
num_samples = self.cfg.num_samples |
|
rr = np.random.choice(r, num_samples, replace=False) |
|
rr = torch.tensor(rr, dtype=torch.int64, device=device) |
|
|
|
|
|
ray_view = draw_points( |
|
context_images[rb, rv], |
|
sampling.xy_ray[rb, rv, rr], |
|
0, |
|
radius=4, |
|
x_range=(0, 1), |
|
y_range=(0, 1), |
|
) |
|
ray_view = draw_points( |
|
ray_view, |
|
sampling.xy_ray[rb, rv, rr], |
|
[get_distinct_color(i) for i, _ in enumerate(rr)], |
|
radius=3, |
|
x_range=(0, 1), |
|
y_range=(0, 1), |
|
) |
|
|
|
|
|
sample_view = draw_points( |
|
context_images[rb, self.encoder.sampler.index_v[rv, rov]], |
|
rearrange(sampling.xy_sample[rb, rv, rov, rr], "r s xy -> (r s) xy"), |
|
[get_distinct_color(i // s) for i in range(s * len(rr))], |
|
radius=4, |
|
x_range=(0, 1), |
|
y_range=(0, 1), |
|
) |
|
sample_view = draw_points( |
|
sample_view, |
|
rearrange(sampling.xy_sample[rb, rv, rov, rr], "r s xy -> (r s) xy"), |
|
rearrange(sampling.features[rb, rv, rov, rr], "r s c -> (r s) c"), |
|
radius=3, |
|
x_range=(0, 1), |
|
y_range=(0, 1), |
|
) |
|
|
|
return add_border( |
|
hcat(add_label(ray_view, "Ray View"), add_label(sample_view, "Sample View")) |
|
) |
|
|