AnySplat / src /post_opt /simple_trainer.py
alexnasa's picture
Upload 243 files
2568013 verified
import json
import math
import os
import time
from collections import defaultdict
from dataclasses import dataclass, field
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Union
import imageio
import matplotlib
import torchvision
import numpy as np
import torch
import torch.nn.functional as F
import tqdm
import tyro
import viser
import yaml
import torchvision
import sys
from plyfile import PlyData, PlyElement
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
from src.model.encoder.vggt.utils.pose_enc import pose_encoding_to_extri_intri
from src.model.types import Gaussians
from src.post_opt.datasets.colmap import Dataset, Parser
from src.post_opt.datasets.traj import (
generate_ellipse_path_z,
generate_interpolated_path,
generate_spiral_path,
)
from fused_ssim import fused_ssim
from src.utils.image import process_image
from src.post_opt.exporter import export_splats
from src.post_opt.lib_bilagrid import BilateralGrid, color_correct, slice, total_variation_loss
from torch import Tensor
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
from torchmetrics.image import PeakSignalNoiseRatio, StructuralSimilarityIndexMeasure
from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity
from typing_extensions import Literal, assert_never
from src.post_opt.utils import AppearanceOptModule, CameraOptModule, knn, rgb_to_sh, set_random_seed
# from gsplat import export_splats
from gsplat.compression import PngCompression
from gsplat.distributed import cli
# from gsplat.optimizers import SelectiveAdam
# from gsplat.rendering import rasterization
from gsplat import rasterization
from gsplat.strategy import DefaultStrategy, MCMCStrategy
from src.post_opt.gsplat_viewer import GsplatViewer, GsplatRenderTabState
from nerfview import CameraState, RenderTabState, apply_float_colormap
import torch
from einops import rearrange
from jaxtyping import Float
from torch import Tensor
from scipy.spatial.transform import Rotation as R
from src.model.model.anysplat import AnySplat
# pytorch3d/pytorch3d/transforms/rotation_conversions.py at main · facebookresearch/pytorch3d
def quaternion_to_matrix(
quaternions: Float[Tensor, "*batch 4"],
eps: float = 1e-8,
) -> Float[Tensor, "*batch 3 3"]:
# Order changed to match scipy format!
i, j, k, r = torch.unbind(quaternions, dim=-1)
two_s = 2 / ((quaternions * quaternions).sum(dim=-1) + eps)
o = torch.stack(
(
1 - two_s * (j * j + k * k),
two_s * (i * j - k * r),
two_s * (i * k + j * r),
two_s * (i * j + k * r),
1 - two_s * (i * i + k * k),
two_s * (j * k - i * r),
two_s * (i * k - j * r),
two_s * (j * k + i * r),
1 - two_s * (i * i + j * j),
),
-1,
)
return rearrange(o, "... (i j) -> ... i j", i=3, j=3)
def construct_list_of_attributes(num_rest: int) -> list[str]:
attributes = ["x", "y", "z", "nx", "ny", "nz"]
for i in range(3):
attributes.append(f"f_dc_{i}")
for i in range(num_rest):
attributes.append(f"f_rest_{i}")
attributes.append("opacity")
for i in range(3):
attributes.append(f"scale_{i}")
for i in range(4):
attributes.append(f"rot_{i}")
return attributes
def export_ply(
means: Float[Tensor, "gaussian 3"],
scales: Float[Tensor, "gaussian 3"],
rotations: Float[Tensor, "gaussian 4"],
harmonics: Float[Tensor, "gaussian 3 d_sh"],
opacities: Float[Tensor, " gaussian"],
path: Path,
shift_and_scale: bool = False,
save_sh_dc_only: bool = True,
):
if shift_and_scale:
# Shift the scene so that the median Gaussian is at the origin.
means = means - means.median(dim=0).values
# Rescale the scene so that most Gaussians are within range [-1, 1].
scale_factor = means.abs().quantile(0.95, dim=0).max()
means = means / scale_factor
scales = scales / scale_factor
# Apply the rotation to the Gaussian rotations.
rotations = R.from_quat(rotations.detach().cpu().numpy()).as_matrix()
rotations = R.from_matrix(rotations).as_quat()
x, y, z, w = rearrange(rotations, "g xyzw -> xyzw g")
rotations = np.stack((w, x, y, z), axis=-1)
# Since current model use SH_degree = 4,
# which require large memory to store, we can only save the DC band to save memory.
f_dc = harmonics[..., 0]
f_rest = harmonics[..., 1:].flatten(start_dim=1)
dtype_full = [(attribute, "f4") for attribute in construct_list_of_attributes(0 if save_sh_dc_only else f_rest.shape[1])]
elements = np.empty(means.shape[0], dtype=dtype_full)
attributes = [
means.detach().cpu().numpy(),
torch.zeros_like(means).detach().cpu().numpy(),
f_dc.detach().cpu().contiguous().numpy(),
f_rest.detach().cpu().contiguous().numpy(),
opacities[..., None].detach().cpu().numpy(),
scales.detach().cpu().numpy(),
rotations,
]
if save_sh_dc_only:
# remove f_rest from attributes
attributes.pop(3)
attributes = np.concatenate(attributes, axis=1)
elements[:] = list(map(tuple, attributes))
path.parent.mkdir(exist_ok=True, parents=True)
PlyData([PlyElement.describe(elements, "vertex")]).write(path)
def colorize_depth_maps(depth_map, min_depth=0.0, max_depth=1.0, cmap="Spectral", valid_mask=None):
"""
Colorize depth maps.
"""
assert len(depth_map.shape) >= 2, "Invalid dimension"
if isinstance(depth_map, torch.Tensor):
depth = depth_map.detach().clone().squeeze().numpy()
elif isinstance(depth_map, np.ndarray):
depth = depth_map.copy().squeeze()
# reshape to [ (B,) H, W ]
if depth.ndim < 3:
depth = depth[np.newaxis, :, :]
# colorize
cm = matplotlib.colormaps[cmap]
# depth = ((depth - min_depth) / (max_depth - min_depth)).clip(0, 1)
depth = ((depth - depth.min()) / (depth.max() - depth.min())).clip(0, 1)
img_colored_np = cm(depth, bytes=False)[:, :, :, 0:3] # value from 0 to 1
img_colored_np = np.rollaxis(img_colored_np, 3, 1)
if valid_mask is not None:
if isinstance(depth_map, torch.Tensor):
valid_mask = valid_mask.detach().numpy()
valid_mask = valid_mask.squeeze() # [H, W] or [B, H, W]
if valid_mask.ndim < 3:
valid_mask = valid_mask[np.newaxis, np.newaxis, :, :]
else:
valid_mask = valid_mask[:, np.newaxis, :, :]
valid_mask = np.repeat(valid_mask, 3, axis=1)
img_colored_np[~valid_mask] = 0
if isinstance(depth_map, torch.Tensor):
img_colored = torch.from_numpy(img_colored_np).float()
elif isinstance(depth_map, np.ndarray):
img_colored = img_colored_np
return img_colored
def build_covariance(
scale: Float[Tensor, "*#batch 3"],
rotation_xyzw: Float[Tensor, "*#batch 4"],
) -> Float[Tensor, "*batch 3 3"]:
scale = scale.diag_embed()
rotation = quaternion_to_matrix(rotation_xyzw)
return (
rotation
@ scale
@ rearrange(scale, "... i j -> ... j i")
@ rearrange(rotation, "... i j -> ... j i")
)
@dataclass
class Config:
# Disable viewer
disable_viewer: bool = True
# Path to the .pt files. If provide, it will skip training and run evaluation only.
ckpt: Optional[List[str]] = None
# Name of compression strategy to use
compression: Optional[Literal["png"]] = None
# Render trajectory path
render_traj_path: str = "interp"
data_dir: str = "data/360_v2/garden"
# Downsample factor for the dataset
data_factor: int = 4
# Directory to save results
result_dir: str = "results/garden"
# Every N images there is a test image
test_every: int = 8
# Random crop size for training (experimental)
patch_size: Optional[int] = None
# A global scaler that applies to the scene size related parameters
global_scale: float = 1.0
# Normalize the world space
normalize_world_space: bool = True
# Camera model
camera_model: Literal["pinhole", "ortho", "fisheye"] = "pinhole"
# Port for the viewer server
port: int = 8080
# Batch size for training. Learning rates are scaled automatically
batch_size: int = 1
# A global factor to scale the number of training steps
steps_scaler: float = 1.0
# Number of training steps
max_steps: int = 3_000
# Steps to evaluate the model
eval_steps: List[int] = field(default_factory=lambda: [1, 1_000, 3_000, 7_000, 10_000])
# Steps to save the model
save_steps: List[int] = field(default_factory=lambda: [1, 1_000, 3_000, 7_000, 10_000])
# Whether to save ply file (storage size can be large)
save_ply: bool = False
# Steps to save the model as ply
ply_steps: List[int] = field(default_factory=lambda: [1, 1_000, 3_000, 7_000, 10_000])
# Whether to disable video generation during training and evaluation
disable_video: bool = False
# Initialization strategy
init_type: str = "sfm"
# Initial number of GSs. Ignored if using sfm
init_num_pts: int = 100_000
# Initial extent of GSs as a multiple of the camera extent. Ignored if using sfm
init_extent: float = 3.0
# Degree of spherical harmonics
sh_degree: int = 4
# Turn on another SH degree every this steps
sh_degree_interval: int = 1000
# Initial opacity of GS
init_opa: float = 0.1
# Initial scale of GS
init_scale: float = 1.0
# Weight for SSIM loss
ssim_lambda: float = 0.2
# Near plane clipping distance
near_plane: float = 1e-10
# Far plane clipping distance
far_plane: float = 1e10
# Strategy for GS densification
strategy: Union[DefaultStrategy, MCMCStrategy] = field(
default_factory=DefaultStrategy
)
# Use packed mode for rasterization, this leads to less memory usage but slightly slower.
packed: bool = False
# Use sparse gradients for optimization. (experimental)
sparse_grad: bool = False
# Use visible adam from Taming 3DGS. (experimental)
visible_adam: bool = False
# Anti-aliasing in rasterization. Might slightly hurt quantitative metrics.
antialiased: bool = False
# Use random background for training to discourage transparency
random_bkgd: bool = False
# Opacity regularization
opacity_reg: float = 0.0
# Scale regularization
scale_reg: float = 0.0
# Enable camera optimization.
pose_opt: bool = True
# Learning rate for camera optimization
pose_opt_lr: float = 1e-5
# Regularization for camera optimization as weight decay
pose_opt_reg: float = 1e-6
# Add noise to camera extrinsics. This is only to test the camera pose optimization.
pose_noise: float = 0.0
# Enable appearance optimization. (experimental)
app_opt: bool = False
# Appearance embedding dimension
app_embed_dim: int = 16
# Learning rate for appearance optimization
app_opt_lr: float = 1e-3
# Regularization for appearance optimization as weight decay
app_opt_reg: float = 1e-6
# Enable bilateral grid. (experimental)
use_bilateral_grid: bool = False
# Shape of the bilateral grid (X, Y, W)
bilateral_grid_shape: Tuple[int, int, int] = (16, 16, 8)
# Enable depth loss. (experimental)
depth_loss: bool = False
# Weight for depth loss
depth_lambda: float = 1e-2
# Dump information to tensorboard every this steps
tb_every: int = 100
# Save training images to tensorboard
tb_save_image: bool = False
lpips_net: Literal["vgg", "alex"] = "vgg"
lr_means: float = 1.6e-4
lr_scales: float = 5e-3
lr_quats: float = 1e-3
lr_opacities: float = 5e-2
lr_sh: float = 2.5e-3
def adjust_steps(self, factor: float):
self.eval_steps = [int(i * factor) for i in self.eval_steps]
self.save_steps = [int(i * factor) for i in self.save_steps]
self.ply_steps = [int(i * factor) for i in self.ply_steps]
self.max_steps = int(self.max_steps * factor)
self.sh_degree_interval = int(self.sh_degree_interval * factor)
strategy = self.strategy
if isinstance(strategy, DefaultStrategy):
# strategy.refine_start_iter = int(strategy.refine_start_iter * factor)
# strategy.refine_stop_iter = int(strategy.refine_stop_iter * factor)
# strategy.reset_every = int(strategy.reset_every * factor)
# strategy.refine_every = int(strategy.refine_every * factor)
strategy.refine_start_iter = 30000
strategy.refine_stop_iter = 0
strategy.reset_every = 30000
strategy.refine_every = 30000
elif isinstance(strategy, MCMCStrategy):
strategy.refine_start_iter = int(strategy.refine_start_iter * factor)
strategy.refine_stop_iter = int(strategy.refine_stop_iter * factor)
strategy.refine_every = int(strategy.refine_every * factor)
else:
assert_never(strategy)
def create_splats_with_optimizers(
gaussians: Gaussians,
init_num_pts: int = 100_000,
init_extent: float = 3.0,
init_opacity: float = 0.1,
init_scale: float = 1.0,
sh_degree: int = 3,
sparse_grad: bool = False,
visible_adam: bool = False,
batch_size: int = 1,
feature_dim: Optional[int] = None,
device: str = "cuda",
world_rank: int = 0,
world_size: int = 1,
cfg: Config = None,
) -> Tuple[torch.nn.ParameterDict, Dict[str, torch.optim.Optimizer]]:
points = gaussians.means[0].detach().float()
scales = torch.log(gaussians.scales[0].detach().float())
quats = gaussians.rotations[0].detach().float()
opacities = torch.logit(gaussians.opacities[0].detach().float())
harmonics = gaussians.harmonics[0].detach().float().permute(0, 2, 1).contiguous()
N = points.shape[0]
scene_scale = 1.0
masks = opacities.sigmoid() > 0.01
harmonics = harmonics[masks]
params = [
# name, value, lr
("means", torch.nn.Parameter(points[masks]), cfg.lr_means * scene_scale),
("scales", torch.nn.Parameter(scales[masks]), cfg.lr_scales),
("quats", torch.nn.Parameter(quats[masks]), cfg.lr_quats),
("opacities", torch.nn.Parameter(opacities[masks]), cfg.lr_opacities),
]
params.append(("sh0", torch.nn.Parameter(harmonics[:, :1, :]), cfg.lr_sh))
params.append(("shN", torch.nn.Parameter(harmonics[:, 1:, :]), cfg.lr_sh/20))
splats = torch.nn.ParameterDict({n: v for n, v, _ in params}).to(device)
# Scale learning rate based on batch size, reference:
# https://www.cs.princeton.edu/~smalladi/blog/2024/01/22/SDEs-ScalingRules/
# Note that this would not make the training exactly equivalent, see
# https://arxiv.org/pdf/2402.18824v1
BS = batch_size * world_size
optimizer_class = None
if sparse_grad:
optimizer_class = torch.optim.SparseAdam
elif visible_adam:
optimizer_class = SelectiveAdam
else:
optimizer_class = torch.optim.Adam
optimizers = {
name: optimizer_class(
[{"params": splats[name], "lr": lr * math.sqrt(BS), "name": name}],
eps=1e-15 / math.sqrt(BS),
# TODO: check betas logic when BS is larger than 10 betas[0] will be zero.
betas=(1 - BS * (1 - 0.9), 1 - BS * (1 - 0.999)),
)
for name, _, lr in params
}
return splats, optimizers
class Runner:
"""Engine for training and testing."""
def __init__(
self, local_rank: int, world_rank, world_size: int, cfg: Config
) -> None:
set_random_seed(42 + local_rank)
self.cfg = cfg
self.world_rank = world_rank
self.local_rank = local_rank
self.world_size = world_size
self.device = f"cuda:{local_rank}"
# Where to dump results.
os.makedirs(cfg.result_dir, exist_ok=True)
# Setup output directories.
self.ckpt_dir = f"{cfg.result_dir}/ckpts"
os.makedirs(self.ckpt_dir, exist_ok=True)
self.stats_dir = f"{cfg.result_dir}/stats"
os.makedirs(self.stats_dir, exist_ok=True)
self.render_dir = f"{cfg.result_dir}/renders"
os.makedirs(self.render_dir, exist_ok=True)
self.ply_dir = f"{cfg.result_dir}/ply"
os.makedirs(self.ply_dir, exist_ok=True)
# Tensorboard
self.writer = SummaryWriter(log_dir=f"{cfg.result_dir}/tb")
# first get the initial 3DGS and camera poses
model = AnySplat.from_pretrained("lhjiang/anysplat")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()
for param in model.parameters():
param.requires_grad = False
image_folder = cfg.data_dir
image_names = sorted([os.path.join(image_folder, f) for f in os.listdir(image_folder) if f.lower().endswith(('.png', '.jpg', '.jpeg'))])
images = [process_image(img_path) for img_path in image_names]
ctx_indices = [idx for idx, name in enumerate(image_names) if idx % cfg.test_every != 0]
tgt_indices = [idx for idx, name in enumerate(image_names) if idx % cfg.test_every == 0]
ctx_images = torch.stack([images[i] for i in ctx_indices], dim=0).unsqueeze(0).to(device)
tgt_images = torch.stack([images[i] for i in tgt_indices], dim=0).unsqueeze(0).to(device)
ctx_images = (ctx_images+1)*0.5
tgt_images = (tgt_images+1)*0.5
b, v, _, h, w = tgt_images.shape
# run inference
encoder_output = model.encoder(
ctx_images,
global_step=0,
visualization_dump={},
)
gaussians, pred_context_pose = encoder_output.gaussians, encoder_output.pred_context_pose
num_context_view = ctx_images.shape[1]
vggt_input_image = torch.cat((ctx_images, tgt_images), dim=1).to(torch.bfloat16)
with torch.no_grad(), torch.cuda.amp.autocast(enabled=False, dtype=torch.bfloat16):
aggregated_tokens_list, patch_start_idx = model.encoder.aggregator(vggt_input_image, intermediate_layer_idx=model.encoder.cfg.intermediate_layer_idx)
with torch.cuda.amp.autocast(enabled=False):
fp32_tokens = [token.float() for token in aggregated_tokens_list]
pred_all_pose_enc = model.encoder.camera_head(fp32_tokens)[-1]
pred_all_extrinsic, pred_all_intrinsic = pose_encoding_to_extri_intri(pred_all_pose_enc, vggt_input_image.shape[-2:])
extrinsic_padding = torch.tensor([0, 0, 0, 1], device=pred_all_extrinsic.device, dtype=pred_all_extrinsic.dtype).view(1, 1, 1, 4).repeat(b, vggt_input_image.shape[1], 1, 1)
pred_all_extrinsic = torch.cat([pred_all_extrinsic, extrinsic_padding], dim=2).inverse()
pred_all_intrinsic[:, :, 0] = pred_all_intrinsic[:, :, 0] / w
pred_all_intrinsic[:, :, 1] = pred_all_intrinsic[:, :, 1] / h
pred_all_context_extrinsic, pred_all_target_extrinsic = pred_all_extrinsic[:, :num_context_view], pred_all_extrinsic[:, num_context_view:]
pred_all_context_intrinsic, pred_all_target_intrinsic = pred_all_intrinsic[:, :num_context_view], pred_all_intrinsic[:, num_context_view:]
scale_factor = pred_context_pose['extrinsic'][:, :, :3, 3].mean() / pred_all_context_extrinsic[:, :, :3, 3].mean()
pred_all_target_extrinsic[..., :3, 3] = pred_all_target_extrinsic[..., :3, 3] * scale_factor
pred_all_context_extrinsic[..., :3, 3] = pred_all_context_extrinsic[..., :3, 3] * scale_factor
print("scale_factor:", scale_factor)
# Load data: Training data should contain initial points and colors.
# self.parser = Parser(
# data_dir=cfg.data_dir,
# factor=cfg.data_factor,
# normalize=cfg.normalize_world_space,
# test_every=cfg.test_every,
# )
self.trainset = Dataset(
split="train",
images=ctx_images[0].detach().cpu().numpy(),
camtoworlds=pred_all_context_extrinsic[0].detach().cpu().numpy(),
Ks=pred_all_context_intrinsic[0].detach().cpu().numpy(),
patch_size=cfg.patch_size,
load_depths=cfg.depth_loss,
)
self.valset = Dataset(
images=tgt_images[0].detach().cpu().numpy(),
camtoworlds=pred_all_target_extrinsic[0].detach().cpu().numpy(),
Ks=pred_all_target_intrinsic[0].detach().cpu().numpy(),
split="val"
)
# Model
feature_dim = 32 if cfg.app_opt else None
self.splats, self.optimizers = create_splats_with_optimizers(
gaussians=gaussians,
init_num_pts=cfg.init_num_pts,
init_extent=cfg.init_extent,
init_opacity=cfg.init_opa,
init_scale=cfg.init_scale,
sh_degree=cfg.sh_degree,
sparse_grad=cfg.sparse_grad,
visible_adam=cfg.visible_adam,
batch_size=cfg.batch_size,
feature_dim=feature_dim,
device=self.device,
world_rank=world_rank,
world_size=world_size,
cfg=cfg,
)
print("Model initialized. Number of GS:", len(self.splats["means"]))
# Densification Strategy
self.cfg.strategy.check_sanity(self.splats, self.optimizers)
if isinstance(self.cfg.strategy, DefaultStrategy):
self.strategy_state = self.cfg.strategy.initialize_state(
scene_scale=1.0
)
elif isinstance(self.cfg.strategy, MCMCStrategy):
self.strategy_state = self.cfg.strategy.initialize_state()
else:
assert_never(self.cfg.strategy)
# Compression Strategy
self.compression_method = None
if cfg.compression is not None:
if cfg.compression == "png":
self.compression_method = PngCompression()
else:
raise ValueError(f"Unknown compression strategy: {cfg.compression}")
self.pose_optimizers = []
if cfg.pose_opt:
self.pose_adjust = CameraOptModule(len(self.trainset)).to(self.device)
self.pose_adjust.zero_init()
self.pose_optimizers = [
torch.optim.Adam(
self.pose_adjust.parameters(),
lr=cfg.pose_opt_lr * math.sqrt(cfg.batch_size),
weight_decay=cfg.pose_opt_reg,
)
]
if world_size > 1:
self.pose_adjust = DDP(self.pose_adjust)
if cfg.pose_noise > 0.0:
self.pose_perturb = CameraOptModule(len(self.trainset)).to(self.device)
self.pose_perturb.random_init(cfg.pose_noise)
if world_size > 1:
self.pose_perturb = DDP(self.pose_perturb)
self.app_optimizers = []
if cfg.app_opt:
assert feature_dim is not None
self.app_module = AppearanceOptModule(
len(self.trainset), feature_dim, cfg.app_embed_dim, cfg.sh_degree
).to(self.device)
# initialize the last layer to be zero so that the initial output is zero.
torch.nn.init.zeros_(self.app_module.color_head[-1].weight)
torch.nn.init.zeros_(self.app_module.color_head[-1].bias)
self.app_optimizers = [
torch.optim.Adam(
self.app_module.embeds.parameters(),
lr=cfg.app_opt_lr * math.sqrt(cfg.batch_size) * 10.0,
weight_decay=cfg.app_opt_reg,
),
torch.optim.Adam(
self.app_module.color_head.parameters(),
lr=cfg.app_opt_lr * math.sqrt(cfg.batch_size),
),
]
if world_size > 1:
self.app_module = DDP(self.app_module)
self.bil_grid_optimizers = []
if cfg.use_bilateral_grid:
self.bil_grids = BilateralGrid(
len(self.trainset),
grid_X=cfg.bilateral_grid_shape[0],
grid_Y=cfg.bilateral_grid_shape[1],
grid_W=cfg.bilateral_grid_shape[2],
).to(self.device)
self.bil_grid_optimizers = [
torch.optim.Adam(
self.bil_grids.parameters(),
lr=2e-3 * math.sqrt(cfg.batch_size),
eps=1e-15,
),
]
# Losses & Metrics.
self.ssim = StructuralSimilarityIndexMeasure(data_range=1.0).to(self.device)
self.psnr = PeakSignalNoiseRatio(data_range=1.0).to(self.device)
if cfg.lpips_net == "alex":
self.lpips = LearnedPerceptualImagePatchSimilarity(
net_type="alex", normalize=True
).to(self.device)
elif cfg.lpips_net == "vgg":
# The 3DGS official repo uses lpips vgg, which is equivalent with the following:
self.lpips = LearnedPerceptualImagePatchSimilarity(
net_type="vgg", normalize=False
).to(self.device)
else:
raise ValueError(f"Unknown LPIPS network: {cfg.lpips_net}")
# Viewer
if not self.cfg.disable_viewer:
self.server = viser.ViserServer(port=cfg.port, verbose=False)
self.viewer = GsplatViewer(
server=self.server,
render_fn=self._viewer_render_fn,
output_dir=Path(cfg.result_dir),
mode="training",
)
def rasterize_splats(
self,
camtoworlds: Tensor,
Ks: Tensor,
width: int,
height: int,
masks: Optional[Tensor] = None,
rasterize_mode: Optional[Literal["classic", "antialiased"]] = None,
camera_model: Optional[Literal["pinhole", "ortho", "fisheye"]] = None,
**kwargs,
) -> Tuple[Tensor, Tensor, Dict]:
means = self.splats["means"] # [N, 3]
# quats = F.normalize(self.splats["quats"], dim=-1) # [N, 4]
# rasterization does normalization internally
quats = self.splats["quats"] # [N, 4]
scales = torch.exp(self.splats["scales"]) # [N, 3]
opacities = torch.sigmoid(self.splats["opacities"]) # [N,]
image_ids = kwargs.pop("image_ids", None)
if self.cfg.app_opt:
colors = self.app_module(
features=self.splats["features"],
embed_ids=image_ids,
dirs=means[None, :, :] - camtoworlds[:, None, :3, 3],
sh_degree=kwargs.pop("sh_degree", self.cfg.sh_degree),
)
colors = colors + self.splats["colors"]
colors = torch.sigmoid(colors)
else:
colors = torch.cat([self.splats["sh0"], self.splats["shN"]], 1) # [N, K, 3]
if rasterize_mode is None:
rasterize_mode = "antialiased" if self.cfg.antialiased else "classic"
if camera_model is None:
camera_model = self.cfg.camera_model
# covariance = build_covariance(scales[None], quats[None]).squeeze(0)
render_colors, render_alphas, info = rasterization(
means=means,
quats=quats,
scales=scales,
opacities=opacities,
colors=colors,
# covars=covariance,
viewmats=torch.linalg.inv(camtoworlds), # [C, 4, 4]
Ks=Ks, # [C, 3, 3]
width=width,
height=height,
packed=self.cfg.packed,
absgrad=(
self.cfg.strategy.absgrad
if isinstance(self.cfg.strategy, DefaultStrategy)
else False
),
sparse_grad=self.cfg.sparse_grad,
rasterize_mode=rasterize_mode,
distributed=self.world_size > 1,
camera_model=self.cfg.camera_model,
radius_clip=0.1,
backgrounds=torch.tensor([0.0, 0.0, 0.0]).cuda().unsqueeze(0).repeat(1, 1),
**kwargs,
)
if masks is not None:
render_colors[~masks] = 0
return render_colors, render_alphas, info
def train(self):
cfg = self.cfg
device = self.device
world_rank = self.world_rank
world_size = self.world_size
# Dump cfg.
if world_rank == 0:
with open(f"{cfg.result_dir}/cfg.yml", "w") as f:
yaml.dump(vars(cfg), f)
max_steps = cfg.max_steps
init_step = 0
schedulers = [
# means has a learning rate schedule, that end at 0.01 of the initial value
torch.optim.lr_scheduler.ExponentialLR(
self.optimizers["means"], gamma=0.01 ** (1.0 / max_steps)
),
]
if cfg.pose_opt:
# pose optimization has a learning rate schedule
schedulers.append(
torch.optim.lr_scheduler.ExponentialLR(
self.pose_optimizers[0], gamma=0.01 ** (1.0 / max_steps)
)
)
if cfg.use_bilateral_grid:
# bilateral grid has a learning rate schedule. Linear warmup for 1000 steps.
schedulers.append(
torch.optim.lr_scheduler.ChainedScheduler(
[
torch.optim.lr_scheduler.LinearLR(
self.bil_grid_optimizers[0],
start_factor=0.01,
total_iters=1000,
),
torch.optim.lr_scheduler.ExponentialLR(
self.bil_grid_optimizers[0], gamma=0.01 ** (1.0 / max_steps)
),
]
)
)
trainloader = torch.utils.data.DataLoader(
self.trainset,
batch_size=cfg.batch_size,
shuffle=True,
num_workers=4,
persistent_workers=True,
pin_memory=True,
)
trainloader_iter = iter(trainloader)
# Training loop.
global_tic = time.time()
pbar = tqdm.tqdm(range(init_step, max_steps))
for step in pbar:
if not cfg.disable_viewer:
while self.viewer.state == "paused":
time.sleep(0.01)
self.viewer.lock.acquire()
tic = time.time()
try:
data = next(trainloader_iter)
except StopIteration:
trainloader_iter = iter(trainloader)
data = next(trainloader_iter)
camtoworlds = camtoworlds_gt = data["camtoworld"].to(device) # [1, 4, 4]
Ks = data["K"].to(device) # [1, 3, 3]
pixels = data["image"].to(device) / 255.0 # [1, H, W, 3]
num_train_rays_per_step = (
pixels.shape[0] * pixels.shape[1] * pixels.shape[2]
)
image_ids = data["image_id"].to(device)
masks = data["mask"].to(device) if "mask" in data else None # [1, H, W]
if cfg.depth_loss:
points = data["points"].to(device) # [1, M, 2]
depths_gt = data["depths"].to(device) # [1, M]
height, width = pixels.shape[1:3]
if cfg.pose_noise:
camtoworlds = self.pose_perturb(camtoworlds, image_ids)
if cfg.pose_opt:
camtoworlds = self.pose_adjust(camtoworlds, image_ids)
# sh schedule
# sh_degree_to_use = min(step // cfg.sh_degree_interval, cfg.sh_degree)
sh_degree_to_use = cfg.sh_degree
# forward
renders, alphas, info = self.rasterize_splats(
camtoworlds=camtoworlds,
Ks=Ks,
width=width,
height=height,
sh_degree=sh_degree_to_use,
near_plane=cfg.near_plane,
far_plane=cfg.far_plane,
image_ids=image_ids,
render_mode="RGB+ED" if cfg.depth_loss else "RGB",
masks=masks,
)
if renders.shape[-1] == 4:
colors, depths = renders[..., 0:3], renders[..., 3:4]
else:
colors, depths = renders, None
if cfg.use_bilateral_grid:
grid_y, grid_x = torch.meshgrid(
(torch.arange(height, device=self.device) + 0.5) / height,
(torch.arange(width, device=self.device) + 0.5) / width,
indexing="ij",
)
grid_xy = torch.stack([grid_x, grid_y], dim=-1).unsqueeze(0)
colors = slice(self.bil_grids, grid_xy, colors, image_ids)["rgb"]
if cfg.random_bkgd:
bkgd = torch.rand(1, 3, device=device)
colors = colors + bkgd * (1.0 - alphas)
self.cfg.strategy.step_pre_backward(
params=self.splats,
optimizers=self.optimizers,
state=self.strategy_state,
step=step,
info=info,
)
# loss
l1loss = F.l1_loss(colors, pixels)
ssimloss = 1.0 - fused_ssim(
colors.permute(0, 3, 1, 2), pixels.permute(0, 3, 1, 2), padding="valid"
)
loss = l1loss * (1.0 - cfg.ssim_lambda) + ssimloss * cfg.ssim_lambda
if cfg.depth_loss:
# query depths from depth map
points = torch.stack(
[
points[:, :, 0] / (width - 1) * 2 - 1,
points[:, :, 1] / (height - 1) * 2 - 1,
],
dim=-1,
) # normalize to [-1, 1]
grid = points.unsqueeze(2) # [1, M, 1, 2]
depths = F.grid_sample(
depths.permute(0, 3, 1, 2), grid, align_corners=True
) # [1, 1, M, 1]
depths = depths.squeeze(3).squeeze(1) # [1, M]
# calculate loss in disparity space
disp = torch.where(depths > 0.0, 1.0 / depths, torch.zeros_like(depths))
disp_gt = 1.0 / depths_gt # [1, M]
depthloss = F.l1_loss(disp, disp_gt) * self.scene_scale
loss += depthloss * cfg.depth_lambda
if cfg.use_bilateral_grid:
tvloss = 10 * total_variation_loss(self.bil_grids.grids)
loss += tvloss
# regularizations
if cfg.opacity_reg > 0.0:
loss = (
loss
+ cfg.opacity_reg
* torch.abs(torch.sigmoid(self.splats["opacities"])).mean()
)
if cfg.scale_reg > 0.0:
loss = (
loss
+ cfg.scale_reg * torch.abs(torch.exp(self.splats["scales"])).mean()
)
loss.backward()
desc = f"loss={loss.item():.3f}| " f"sh degree={sh_degree_to_use}| "
if cfg.depth_loss:
desc += f"depth loss={depthloss.item():.6f}| "
if cfg.pose_opt and cfg.pose_noise:
# monitor the pose error if we inject noise
pose_err = F.l1_loss(camtoworlds_gt, camtoworlds)
desc += f"pose err={pose_err.item():.6f}| "
pbar.set_description(desc)
# write images (gt and render)
# if world_rank == 0 and step % 800 == 0:
# canvas = torch.cat([pixels, colors], dim=2).detach().cpu().numpy()
# canvas = canvas.reshape(-1, *canvas.shape[2:])
# imageio.imwrite(
# f"{self.render_dir}/train_rank{self.world_rank}.png",
# (canvas * 255).astype(np.uint8),
# )
if world_rank == 0 and cfg.tb_every > 0 and step % cfg.tb_every == 0:
mem = torch.cuda.max_memory_allocated() / 1024**3
self.writer.add_scalar("train/loss", loss.item(), step)
self.writer.add_scalar("train/l1loss", l1loss.item(), step)
self.writer.add_scalar("train/ssimloss", ssimloss.item(), step)
self.writer.add_scalar("train/num_GS", len(self.splats["means"]), step)
self.writer.add_scalar("train/mem", mem, step)
if cfg.depth_loss:
self.writer.add_scalar("train/depthloss", depthloss.item(), step)
if cfg.use_bilateral_grid:
self.writer.add_scalar("train/tvloss", tvloss.item(), step)
if cfg.tb_save_image:
canvas = torch.cat([pixels, colors], dim=2).detach().cpu().numpy()
canvas = canvas.reshape(-1, *canvas.shape[2:])
self.writer.add_image("train/render", canvas, step)
self.writer.flush()
# save checkpoint before updating the model
if step in [i - 1 for i in cfg.save_steps] or step == max_steps - 1:
mem = torch.cuda.max_memory_allocated() / 1024**3
stats = {
"mem": mem,
"ellipse_time": time.time() - global_tic,
"num_GS": len(self.splats["means"]),
}
print("Step: ", step, stats)
with open(
f"{self.stats_dir}/train_step{step:04d}_rank{self.world_rank}.json",
"w",
) as f:
json.dump(stats, f)
data = {"step": step, "splats": self.splats.state_dict()}
if cfg.pose_opt:
if world_size > 1:
data["pose_adjust"] = self.pose_adjust.module.state_dict()
else:
data["pose_adjust"] = self.pose_adjust.state_dict()
if cfg.app_opt:
if world_size > 1:
data["app_module"] = self.app_module.module.state_dict()
else:
data["app_module"] = self.app_module.state_dict()
torch.save(
data, f"{self.ckpt_dir}/ckpt_{step}_rank{self.world_rank}.pt"
)
if (
step in [i - 1 for i in cfg.ply_steps] or step == max_steps - 1
) and cfg.save_ply:
if self.cfg.app_opt:
# eval at origin to bake the appeareance into the colors
rgb = self.app_module(
features=self.splats["features"],
embed_ids=None,
dirs=torch.zeros_like(self.splats["means"][None, :, :]),
sh_degree=sh_degree_to_use,
)
rgb = rgb + self.splats["colors"]
rgb = torch.sigmoid(rgb).squeeze(0).unsqueeze(1)
sh0 = rgb_to_sh(rgb)
shN = torch.empty([sh0.shape[0], 0, 3], device=sh0.device)
else:
sh0 = self.splats["sh0"]
shN = self.splats["shN"]
# shN = torch.empty([sh0.shape[0], 0, 3], device=sh0.device)
means = self.splats["means"]
scales = self.splats["scales"]
quats = self.splats["quats"]
opacities = self.splats["opacities"]
# export_splats(
# means=means,
# scales=scales,
# quats=quats,
# opacities=opacities,
# sh0=sh0,
# shN=shN,
# format="ply",
# save_to=f"{self.ply_dir}/point_cloud_{step}.ply",
# )
export_ply(
means=means,
scales=scales,
rotations=quats,
harmonics=torch.cat([sh0, shN], dim=1).permute(0, 2, 1),
opacities=opacities.sigmoid(),
path=Path(f"{self.ply_dir}/point_cloud_{step}.ply"),
)
# Turn Gradients into Sparse Tensor before running optimizer
if cfg.sparse_grad:
assert cfg.packed, "Sparse gradients only work with packed mode."
gaussian_ids = info["gaussian_ids"]
for k in self.splats.keys():
grad = self.splats[k].grad
if grad is None or grad.is_sparse:
continue
self.splats[k].grad = torch.sparse_coo_tensor(
indices=gaussian_ids[None], # [1, nnz]
values=grad[gaussian_ids], # [nnz, ...]
size=self.splats[k].size(), # [N, ...]
is_coalesced=len(Ks) == 1,
)
if cfg.visible_adam:
gaussian_cnt = self.splats.means.shape[0]
if cfg.packed:
visibility_mask = torch.zeros_like(
self.splats["opacities"], dtype=bool
)
visibility_mask.scatter_(0, info["gaussian_ids"], 1)
else:
visibility_mask = (info["radii"] > 0).all(-1).any(0)
# optimize
for optimizer in self.optimizers.values():
if cfg.visible_adam:
optimizer.step(visibility_mask)
else:
optimizer.step()
optimizer.zero_grad(set_to_none=True)
for optimizer in self.pose_optimizers:
optimizer.step()
optimizer.zero_grad(set_to_none=True)
for optimizer in self.app_optimizers:
optimizer.step()
optimizer.zero_grad(set_to_none=True)
for optimizer in self.bil_grid_optimizers:
optimizer.step()
optimizer.zero_grad(set_to_none=True)
for scheduler in schedulers:
scheduler.step()
# Run post-backward steps after backward and optimizer
if isinstance(self.cfg.strategy, DefaultStrategy):
self.cfg.strategy.step_post_backward(
params=self.splats,
optimizers=self.optimizers,
state=self.strategy_state,
step=step,
info=info,
packed=cfg.packed,
)
elif isinstance(self.cfg.strategy, MCMCStrategy):
self.cfg.strategy.step_post_backward(
params=self.splats,
optimizers=self.optimizers,
state=self.strategy_state,
step=step,
info=info,
lr=schedulers[0].get_last_lr()[0],
)
else:
assert_never(self.cfg.strategy)
# eval the full set
if step in [i - 1 for i in cfg.eval_steps]:
self.eval(step)
# self.render_traj(step)
# run compression
if cfg.compression is not None and step in [i - 1 for i in cfg.eval_steps]:
self.run_compression(step=step)
if not cfg.disable_viewer:
self.viewer.lock.release()
num_train_steps_per_sec = 1.0 / (time.time() - tic)
num_train_rays_per_sec = (
num_train_rays_per_step * num_train_steps_per_sec
)
# Update the viewer state.
self.viewer.render_tab_state.num_train_rays_per_sec = (
num_train_rays_per_sec
)
# Update the scene.
self.viewer.update(step, num_train_rays_per_step)
@torch.no_grad()
def eval(self, step: int, stage: str = "val"):
"""Entry for evaluation."""
print("Running evaluation...")
cfg = self.cfg
device = self.device
world_rank = self.world_rank
world_size = self.world_size
valloader = torch.utils.data.DataLoader(
self.valset, batch_size=1, shuffle=False, num_workers=1
)
ellipse_time = 0
metrics = defaultdict(list)
for i, data in enumerate(valloader):
camtoworlds = data["camtoworld"].to(device)
Ks = data["K"].to(device)
pixels = data["image"].to(device) / 255.0
masks = data["mask"].to(device) if "mask" in data else None
height, width = pixels.shape[1:3]
torch.cuda.synchronize()
tic = time.time()
render_colors, _, _ = self.rasterize_splats(
camtoworlds=camtoworlds,
Ks=Ks,
width=width,
height=height,
sh_degree=cfg.sh_degree,
near_plane=cfg.near_plane,
far_plane=cfg.far_plane,
# radius_clip=0.1,
render_mode="RGB+ED",
masks=masks,
) # [1, H, W, 3]
torch.cuda.synchronize()
ellipse_time += time.time() - tic
colors = render_colors[..., :3]
depths = render_colors[..., 3]
colors = torch.clamp(colors, 0.0, 1.0)
canvas_list = [pixels, colors]
if world_rank == 0:
# write images
canvas = torch.cat(canvas_list, dim=2).squeeze(0).cpu().numpy()
canvas = (canvas * 255).astype(np.uint8)
imageio.imwrite(
f"{self.render_dir}/{stage}_step{step}_{i:04d}.png",
canvas,
)
torchvision.utils.save_image(pixels.permute(0, 3, 1, 2), f"{self.render_dir}/gt_rgb_{stage}_step{step}_{i:04d}.png")
torchvision.utils.save_image(colors.permute(0, 3, 1, 2), f"{self.render_dir}/render_rgb_{stage}_step{step}_{i:04d}.png")
# save depth & normal map
pixels_p = pixels.permute(0, 3, 1, 2) # [1, 3, H, W]
colors_p = colors.permute(0, 3, 1, 2) # [1, 3, H, W]
metrics["psnr"].append(self.psnr(colors_p, pixels_p))
metrics["ssim"].append(self.ssim(colors_p, pixels_p))
metrics["lpips"].append(self.lpips(colors_p, pixels_p))
if cfg.use_bilateral_grid:
cc_colors = color_correct(colors, pixels)
cc_colors_p = cc_colors.permute(0, 3, 1, 2) # [1, 3, H, W]
metrics["cc_psnr"].append(self.psnr(cc_colors_p, pixels_p))
if world_rank == 0:
ellipse_time /= len(valloader)
stats = {k: torch.stack(v).mean().item() for k, v in metrics.items()}
stats.update(
{
"ellipse_time": ellipse_time,
"num_GS": len(self.splats["means"]),
}
)
print(
f"PSNR: {stats['psnr']:.3f}, SSIM: {stats['ssim']:.4f}, LPIPS: {stats['lpips']:.3f} "
f"Time: {stats['ellipse_time']:.3f}s/image "
f"Number of GS: {stats['num_GS']}"
)
# save stats as json
with open(f"{self.stats_dir}/{stage}_step{step:04d}.json", "w") as f:
json.dump(stats, f)
# save stats to tensorboard
for k, v in stats.items():
self.writer.add_scalar(f"{stage}/{k}", v, step)
self.writer.flush()
@torch.no_grad()
def render_traj(self, step: int):
"""Entry for trajectory rendering."""
if self.cfg.disable_video:
return
print("Running trajectory rendering...")
cfg = self.cfg
device = self.device
camtoworlds_all = self.parser.camtoworlds[5:-5]
if cfg.render_traj_path == "interp":
camtoworlds_all = generate_interpolated_path(
camtoworlds_all, 1
) # [N, 3, 4]
elif cfg.render_traj_path == "ellipse":
height = camtoworlds_all[:, 2, 3].mean()
camtoworlds_all = generate_ellipse_path_z(
camtoworlds_all, height=height
) # [N, 3, 4]
elif cfg.render_traj_path == "spiral":
camtoworlds_all = generate_spiral_path(
camtoworlds_all,
bounds=self.parser.bounds * self.scene_scale,
spiral_scale_r=self.parser.extconf["spiral_radius_scale"],
)
else:
raise ValueError(
f"Render trajectory type not supported: {cfg.render_traj_path}"
)
camtoworlds_all = np.concatenate(
[
camtoworlds_all,
np.repeat(
np.array([[[0.0, 0.0, 0.0, 1.0]]]), len(camtoworlds_all), axis=0
),
],
axis=1,
) # [N, 4, 4]
camtoworlds_all = torch.from_numpy(camtoworlds_all).float().to(device)
K = torch.from_numpy(list(self.parser.Ks_dict.values())[0]).float().to(device)
width, height = list(self.parser.imsize_dict.values())[0]
# save to video
video_dir = f"{cfg.result_dir}/videos"
os.makedirs(video_dir, exist_ok=True)
writer = imageio.get_writer(f"{video_dir}/traj_{step}.mp4", fps=30)
for i in tqdm.trange(len(camtoworlds_all), desc="Rendering trajectory"):
camtoworlds = camtoworlds_all[i : i + 1]
Ks = K[None]
renders, _, _ = self.rasterize_splats(
camtoworlds=camtoworlds,
Ks=Ks,
width=width,
height=height,
sh_degree=cfg.sh_degree,
near_plane=cfg.near_plane,
far_plane=cfg.far_plane,
render_mode="RGB+ED",
) # [1, H, W, 4]
colors = torch.clamp(renders[..., 0:3], 0.0, 1.0) # [1, H, W, 3]
depths = renders[..., 3:4] # [1, H, W, 1]
depths = (depths - depths.min()) / (depths.max() - depths.min())
canvas_list = [colors, depths.repeat(1, 1, 1, 3)]
# write images
canvas = torch.cat(canvas_list, dim=2).squeeze(0).cpu().numpy()
canvas = (canvas * 255).astype(np.uint8)
writer.append_data(canvas)
writer.close()
print(f"Video saved to {video_dir}/traj_{step}.mp4")
@torch.no_grad()
def run_compression(self, step: int):
"""Entry for running compression."""
print("Running compression...")
world_rank = self.world_rank
compress_dir = f"{cfg.result_dir}/compression/rank{world_rank}"
os.makedirs(compress_dir, exist_ok=True)
self.compression_method.compress(compress_dir, self.splats)
# evaluate compression
splats_c = self.compression_method.decompress(compress_dir)
for k in splats_c.keys():
self.splats[k].data = splats_c[k].to(self.device)
self.eval(step=step, stage="compress")
@torch.no_grad()
def _viewer_render_fn(
self, camera_state: CameraState, render_tab_state: RenderTabState
):
assert isinstance(render_tab_state, GsplatRenderTabState)
if render_tab_state.preview_render:
width = render_tab_state.render_width
height = render_tab_state.render_height
else:
width = render_tab_state.viewer_width
height = render_tab_state.viewer_height
c2w = camera_state.c2w
K = camera_state.get_K((width, height))
c2w = torch.from_numpy(c2w).float().to(self.device)
K = torch.from_numpy(K).float().to(self.device)
RENDER_MODE_MAP = {
"rgb": "RGB",
"depth(accumulated)": "D",
"depth(expected)": "ED",
"alpha": "RGB",
}
render_colors, render_alphas, info = self.rasterize_splats(
camtoworlds=c2w[None],
Ks=K[None],
width=width,
height=height,
sh_degree=min(render_tab_state.max_sh_degree, self.cfg.sh_degree),
near_plane=render_tab_state.near_plane,
far_plane=render_tab_state.far_plane,
radius_clip=render_tab_state.radius_clip,
# radius_clip=0.1,
eps2d=render_tab_state.eps2d,
backgrounds=torch.tensor([render_tab_state.backgrounds], device=self.device)
/ 255.0,
render_mode=RENDER_MODE_MAP[render_tab_state.render_mode],
rasterize_mode=render_tab_state.rasterize_mode,
camera_model=render_tab_state.camera_model,
) # [1, H, W, 3]
render_tab_state.total_gs_count = len(self.splats["means"])
render_tab_state.rendered_gs_count = (info["radii"] > 0).all(-1).sum().item()
if render_tab_state.render_mode == "rgb":
# colors represented with sh are not guranteed to be in [0, 1]
render_colors = render_colors[0, ..., 0:3].clamp(0, 1)
renders = render_colors.cpu().numpy()
elif render_tab_state.render_mode in ["depth(accumulated)", "depth(expected)"]:
# normalize depth to [0, 1]
depth = render_colors[0, ..., 0:1]
if render_tab_state.normalize_nearfar:
near_plane = render_tab_state.near_plane
far_plane = render_tab_state.far_plane
else:
near_plane = depth.min()
far_plane = depth.max()
depth_norm = (depth - near_plane) / (far_plane - near_plane + 1e-10)
depth_norm = torch.clip(depth_norm, 0, 1)
if render_tab_state.inverse:
depth_norm = 1 - depth_norm
renders = (
apply_float_colormap(depth_norm, render_tab_state.colormap)
.cpu()
.numpy()
)
elif render_tab_state.render_mode == "alpha":
alpha = render_alphas[0, ..., 0:1]
if render_tab_state.inverse:
alpha = 1 - alpha
renders = (
apply_float_colormap(alpha, render_tab_state.colormap).cpu().numpy()
)
return renders
def main(local_rank: int, world_rank, world_size: int, cfg: Config):
if world_size > 1 and not cfg.disable_viewer:
cfg.disable_viewer = True
if world_rank == 0:
print("Viewer is disabled in distributed training.")
runner = Runner(local_rank, world_rank, world_size, cfg)
if cfg.ckpt is not None:
# run eval only
ckpts = [
torch.load(file, map_location=runner.device, weights_only=True)
for file in cfg.ckpt
]
for k in runner.splats.keys():
runner.splats[k].data = torch.cat([ckpt["splats"][k] for ckpt in ckpts])
step = ckpts[0]["step"]
runner.eval(step=step)
# runner.render_traj(step=step)
if cfg.compression is not None:
runner.run_compression(step=step)
else:
runner.train()
runner.eval(step=runner.cfg.max_steps)
# runner.render_traj(step=runner.cfg.max_steps)
print("Training complete.")
# runner.viewer.complete()
# if not cfg.disable_viewer:
# print("Viewer running... Ctrl+C to exit.")
# time.sleep(1000000)
if __name__ == "__main__":
"""
Usage:
```bash
# Single GPU training
CUDA_VISIBLE_DEVICES=9 python -m examples.simple_trainer default
# Distributed training on 4 GPUs: Effectively 4x batch size so run 4x less steps.
CUDA_VISIBLE_DEVICES=0,1,2,3 python simple_trainer.py default --steps_scaler 0.25
"""
# Config objects we can choose between.
# Each is a tuple of (CLI description, config object).
configs = {
"default": (
"Gaussian splatting training using densification heuristics from the original paper.",
Config(
strategy=DefaultStrategy(verbose=True),
),
),
"mcmc": (
"Gaussian splatting training using densification from the paper '3D Gaussian Splatting as Markov Chain Monte Carlo'.",
Config(
init_opa=0.5,
init_scale=0.1,
opacity_reg=0.01,
scale_reg=0.01,
strategy=MCMCStrategy(verbose=True),
),
),
}
cfg = tyro.extras.overridable_config_cli(configs)
cfg.adjust_steps(cfg.steps_scaler)
# try import extra dependencies
if cfg.compression == "png":
try:
import plas
import torchpq
except:
raise ImportError(
"To use PNG compression, you need to install "
"torchpq (instruction at https://github.com/DeMoriarty/TorchPQ?tab=readme-ov-file#install) "
"and plas (via 'pip install git+https://github.com/fraunhoferhhi/PLAS.git') "
)
cli(main, cfg, verbose=True)