|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
from scipy.spatial.transform import Rotation |
|
|
|
from model.dataset.utils.device import to_numpy |
|
from model.dataset.utils.geometry import geotrf, get_med_dist_between_poses |
|
from model.dataset.utils.image import rgb |
|
|
|
try: |
|
import trimesh |
|
except ImportError: |
|
print("/!\\ module trimesh is not installed, cannot visualize results /!\\") |
|
|
|
|
|
def cat_3d(vecs): |
|
if isinstance(vecs, (np.ndarray, torch.Tensor)): |
|
vecs = [vecs] |
|
return np.concatenate([p.reshape(-1, 3) for p in to_numpy(vecs)]) |
|
|
|
|
|
def show_raw_pointcloud(pts3d, colors, point_size=2): |
|
scene = trimesh.Scene() |
|
|
|
pct = trimesh.PointCloud(cat_3d(pts3d), colors=cat_3d(colors)) |
|
scene.add_geometry(pct) |
|
|
|
scene.show(line_settings={"point_size": point_size}) |
|
|
|
|
|
def pts3d_to_trimesh(img, pts3d, valid=None): |
|
H, W, THREE = img.shape |
|
assert THREE == 3 |
|
assert img.shape == pts3d.shape |
|
|
|
vertices = pts3d.reshape(-1, 3) |
|
|
|
|
|
idx = np.arange(len(vertices)).reshape(H, W) |
|
idx1 = idx[:-1, :-1].ravel() |
|
idx2 = idx[:-1, +1:].ravel() |
|
idx3 = idx[+1:, :-1].ravel() |
|
idx4 = idx[+1:, +1:].ravel() |
|
faces = np.concatenate( |
|
( |
|
np.c_[idx1, idx2, idx3], |
|
np.c_[ |
|
idx3, idx2, idx1 |
|
], |
|
np.c_[idx2, idx3, idx4], |
|
np.c_[ |
|
idx4, idx3, idx2 |
|
], |
|
), |
|
axis=0, |
|
) |
|
|
|
|
|
face_colors = np.concatenate( |
|
( |
|
img[:-1, :-1].reshape(-1, 3), |
|
img[:-1, :-1].reshape(-1, 3), |
|
img[+1:, +1:].reshape(-1, 3), |
|
img[+1:, +1:].reshape(-1, 3), |
|
), |
|
axis=0, |
|
) |
|
|
|
|
|
if valid is not None: |
|
assert valid.shape == (H, W) |
|
valid_idxs = valid.ravel() |
|
valid_faces = valid_idxs[faces].all(axis=-1) |
|
faces = faces[valid_faces] |
|
face_colors = face_colors[valid_faces] |
|
|
|
assert len(faces) == len(face_colors) |
|
return dict(vertices=vertices, face_colors=face_colors, faces=faces) |
|
|
|
|
|
def cat_meshes(meshes): |
|
vertices, faces, colors = zip( |
|
*[(m["vertices"], m["faces"], m["face_colors"]) for m in meshes] |
|
) |
|
n_vertices = np.cumsum([0] + [len(v) for v in vertices]) |
|
for i in range(len(faces)): |
|
faces[i][:] += n_vertices[i] |
|
|
|
vertices = np.concatenate(vertices) |
|
colors = np.concatenate(colors) |
|
faces = np.concatenate(faces) |
|
return dict(vertices=vertices, face_colors=colors, faces=faces) |
|
|
|
|
|
def show_duster_pairs(view1, view2, pred1, pred2): |
|
import matplotlib.pyplot as pl |
|
|
|
pl.ion() |
|
|
|
for e in range(len(view1["instance"])): |
|
i = view1["idx"][e] |
|
j = view2["idx"][e] |
|
img1 = rgb(view1["img"][e]) |
|
img2 = rgb(view2["img"][e]) |
|
conf1 = pred1["conf"][e].squeeze() |
|
conf2 = pred2["conf"][e].squeeze() |
|
score = conf1.mean() * conf2.mean() |
|
print(f">> Showing pair #{e} {i}-{j} {score=:g}") |
|
pl.clf() |
|
pl.subplot(221).imshow(img1) |
|
pl.subplot(223).imshow(img2) |
|
pl.subplot(222).imshow(conf1, vmin=1, vmax=30) |
|
pl.subplot(224).imshow(conf2, vmin=1, vmax=30) |
|
pts1 = pred1["pts3d"][e] |
|
pts2 = pred2["pts3d_in_other_view"][e] |
|
pl.subplots_adjust(0, 0, 1, 1, 0, 0) |
|
if input("show pointcloud? (y/n) ") == "y": |
|
show_raw_pointcloud(cat(pts1, pts2), cat(img1, img2), point_size=5) |
|
|
|
|
|
def auto_cam_size(im_poses): |
|
return 0.1 * get_med_dist_between_poses(im_poses) |
|
|
|
|
|
class SceneViz: |
|
def __init__(self): |
|
self.scene = trimesh.Scene() |
|
|
|
def add_pointcloud(self, pts3d, color, mask=None): |
|
pts3d = to_numpy(pts3d) |
|
mask = to_numpy(mask) |
|
if mask is None: |
|
mask = [slice(None)] * len(pts3d) |
|
pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)]) |
|
pct = trimesh.PointCloud(pts.reshape(-1, 3)) |
|
|
|
if isinstance(color, (list, np.ndarray, torch.Tensor)): |
|
color = to_numpy(color) |
|
col = np.concatenate([p[m] for p, m in zip(color, mask)]) |
|
assert col.shape == pts.shape |
|
pct.visual.vertex_colors = uint8(col.reshape(-1, 3)) |
|
else: |
|
assert len(color) == 3 |
|
pct.visual.vertex_colors = np.broadcast_to(uint8(color), pts.shape) |
|
|
|
self.scene.add_geometry(pct) |
|
return self |
|
|
|
def add_camera( |
|
self, |
|
pose_c2w, |
|
focal=None, |
|
color=(0, 0, 0), |
|
image=None, |
|
imsize=None, |
|
cam_size=0.03, |
|
): |
|
pose_c2w, focal, color, image = to_numpy((pose_c2w, focal, color, image)) |
|
add_scene_cam(self.scene, pose_c2w, color, image, focal, screen_width=cam_size) |
|
return self |
|
|
|
def add_cameras( |
|
self, poses, focals=None, images=None, imsizes=None, colors=None, **kw |
|
): |
|
def get(arr, idx): |
|
return None if arr is None else arr[idx] |
|
|
|
for i, pose_c2w in enumerate(poses): |
|
self.add_camera( |
|
pose_c2w, |
|
get(focals, i), |
|
image=get(images, i), |
|
color=get(colors, i), |
|
imsize=get(imsizes, i), |
|
**kw, |
|
) |
|
return self |
|
|
|
def show(self, point_size=2, viewer=None): |
|
return self.scene.show(viewer=viewer, line_settings={"point_size": point_size}) |
|
|
|
|
|
def show_raw_pointcloud_with_cams( |
|
imgs, pts3d, mask, focals, cams2world, point_size=2, cam_size=0.05, cam_color=None |
|
): |
|
"""Visualization of a pointcloud with cameras |
|
imgs = (N, H, W, 3) or N-size list of [(H,W,3), ...] |
|
pts3d = (N, H, W, 3) or N-size list of [(H,W,3), ...] |
|
focals = (N,) or N-size list of [focal, ...] |
|
cams2world = (N,4,4) or N-size list of [(4,4), ...] |
|
""" |
|
assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals) |
|
pts3d = to_numpy(pts3d) |
|
imgs = to_numpy(imgs) |
|
focals = to_numpy(focals) |
|
cams2world = to_numpy(cams2world) |
|
|
|
scene = trimesh.Scene() |
|
|
|
|
|
pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)]) |
|
col = np.concatenate([p[m] for p, m in zip(imgs, mask)]) |
|
pct = trimesh.PointCloud(pts.reshape(-1, 3), colors=col.reshape(-1, 3)) |
|
scene.add_geometry(pct) |
|
|
|
|
|
for i, pose_c2w in enumerate(cams2world): |
|
if isinstance(cam_color, list): |
|
camera_edge_color = cam_color[i] |
|
else: |
|
camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)] |
|
add_scene_cam( |
|
scene, |
|
pose_c2w, |
|
camera_edge_color, |
|
imgs[i] if i < len(imgs) else None, |
|
focals[i], |
|
screen_width=cam_size, |
|
) |
|
|
|
scene.show(line_settings={"point_size": point_size}) |
|
|
|
|
|
def add_scene_cam( |
|
scene, pose_c2w, edge_color, image=None, focal=None, imsize=None, screen_width=0.03 |
|
): |
|
if image is not None: |
|
H, W, THREE = image.shape |
|
assert THREE == 3 |
|
if image.dtype != np.uint8: |
|
image = np.uint8(255 * image) |
|
elif imsize is not None: |
|
W, H = imsize |
|
elif focal is not None: |
|
H = W = focal / 1.1 |
|
else: |
|
H = W = 1 |
|
|
|
if focal is None: |
|
focal = min(H, W) * 1.1 |
|
elif isinstance(focal, np.ndarray): |
|
focal = focal[0] |
|
|
|
|
|
height = focal * screen_width / H |
|
width = screen_width * 0.5**0.5 |
|
rot45 = np.eye(4) |
|
rot45[:3, :3] = Rotation.from_euler("z", np.deg2rad(45)).as_matrix() |
|
rot45[2, 3] = -height |
|
aspect_ratio = np.eye(4) |
|
aspect_ratio[0, 0] = W / H |
|
transform = pose_c2w @ OPENGL @ aspect_ratio @ rot45 |
|
cam = trimesh.creation.cone(width, height, sections=4) |
|
|
|
|
|
if image is not None: |
|
vertices = geotrf(transform, cam.vertices[[4, 5, 1, 3]]) |
|
faces = np.array([[0, 1, 2], [0, 2, 3], [2, 1, 0], [3, 2, 0]]) |
|
img = trimesh.Trimesh(vertices=vertices, faces=faces) |
|
uv_coords = np.float32([[0, 0], [1, 0], [1, 1], [0, 1]]) |
|
img.visual = trimesh.visual.TextureVisuals( |
|
uv_coords, image=PIL.Image.fromarray(image) |
|
) |
|
scene.add_geometry(img) |
|
|
|
|
|
rot2 = np.eye(4) |
|
rot2[:3, :3] = Rotation.from_euler("z", np.deg2rad(2)).as_matrix() |
|
vertices = np.r_[cam.vertices, 0.95 * cam.vertices, geotrf(rot2, cam.vertices)] |
|
vertices = geotrf(transform, vertices) |
|
faces = [] |
|
for face in cam.faces: |
|
if 0 in face: |
|
continue |
|
a, b, c = face |
|
a2, b2, c2 = face + len(cam.vertices) |
|
a3, b3, c3 = face + 2 * len(cam.vertices) |
|
|
|
|
|
faces.append((a, b, b2)) |
|
faces.append((a, a2, c)) |
|
faces.append((c2, b, c)) |
|
|
|
faces.append((a, b, b3)) |
|
faces.append((a, a3, c)) |
|
faces.append((c3, b, c)) |
|
|
|
|
|
faces += [(c, b, a) for a, b, c in faces] |
|
|
|
cam = trimesh.Trimesh(vertices=vertices, faces=faces) |
|
cam.visual.face_colors[:, :3] = edge_color |
|
scene.add_geometry(cam) |
|
|
|
|
|
def cat(a, b): |
|
return np.concatenate((a.reshape(-1, 3), b.reshape(-1, 3))) |
|
|
|
|
|
OPENGL = np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]) |
|
|
|
|
|
CAM_COLORS = [ |
|
(255, 0, 0), |
|
(0, 0, 255), |
|
(0, 255, 0), |
|
(255, 0, 255), |
|
(255, 204, 0), |
|
(0, 204, 204), |
|
(128, 255, 255), |
|
(255, 128, 255), |
|
(255, 255, 128), |
|
(0, 0, 0), |
|
(128, 128, 128), |
|
] |
|
|
|
|
|
def uint8(colors): |
|
if not isinstance(colors, np.ndarray): |
|
colors = np.array(colors) |
|
if np.issubdtype(colors.dtype, np.floating): |
|
colors *= 255 |
|
assert 0 <= colors.min() and colors.max() < 256 |
|
return np.uint8(colors) |
|
|
|
|
|
def segment_sky(image): |
|
import cv2 |
|
from scipy import ndimage |
|
|
|
|
|
image = to_numpy(image) |
|
if np.issubdtype(image.dtype, np.floating): |
|
image = np.uint8(255 * image.clip(min=0, max=1)) |
|
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) |
|
|
|
|
|
lower_blue = np.array([0, 0, 100]) |
|
upper_blue = np.array([30, 255, 255]) |
|
mask = cv2.inRange(hsv, lower_blue, upper_blue).view(bool) |
|
|
|
|
|
mask |= (hsv[:, :, 1] < 10) & (hsv[:, :, 2] > 150) |
|
mask |= (hsv[:, :, 1] < 30) & (hsv[:, :, 2] > 180) |
|
mask |= (hsv[:, :, 1] < 50) & (hsv[:, :, 2] > 220) |
|
|
|
|
|
kernel = np.ones((5, 5), np.uint8) |
|
mask2 = ndimage.binary_opening(mask, structure=kernel) |
|
|
|
|
|
_, labels, stats, _ = cv2.connectedComponentsWithStats( |
|
mask2.view(np.uint8), connectivity=8 |
|
) |
|
cc_sizes = stats[1:, cv2.CC_STAT_AREA] |
|
order = cc_sizes.argsort()[::-1] |
|
i = 0 |
|
selection = [] |
|
while i < len(order) and cc_sizes[order[i]] > cc_sizes[order[0]] / 2: |
|
selection.append(1 + order[i]) |
|
i += 1 |
|
mask3 = np.in1d(labels, selection).reshape(labels.shape) |
|
|
|
|
|
return torch.from_numpy(mask3) |
|
|