|
import torch |
|
from einops import einsum, rearrange, reduce |
|
from jaxtyping import Float |
|
from scipy.spatial.transform import Rotation as R |
|
from torch import Tensor |
|
|
|
|
|
def interpolate_intrinsics( |
|
initial: Float[Tensor, "*#batch 3 3"], |
|
final: Float[Tensor, "*#batch 3 3"], |
|
t: Float[Tensor, " time_step"], |
|
) -> Float[Tensor, "*batch time_step 3 3"]: |
|
initial = rearrange(initial, "... i j -> ... () i j") |
|
final = rearrange(final, "... i j -> ... () i j") |
|
t = rearrange(t, "t -> t () ()") |
|
return initial + (final - initial) * t |
|
|
|
|
|
def intersect_rays( |
|
a_origins: Float[Tensor, "*#batch dim"], |
|
a_directions: Float[Tensor, "*#batch dim"], |
|
b_origins: Float[Tensor, "*#batch dim"], |
|
b_directions: Float[Tensor, "*#batch dim"], |
|
) -> Float[Tensor, "*batch dim"]: |
|
"""Compute the least-squares intersection of rays. Uses the math from here: |
|
https://math.stackexchange.com/a/1762491/286022 |
|
""" |
|
|
|
|
|
a_origins, a_directions, b_origins, b_directions = torch.broadcast_tensors( |
|
a_origins, a_directions, b_origins, b_directions |
|
) |
|
origins = torch.stack((a_origins, b_origins), dim=-2) |
|
directions = torch.stack((a_directions, b_directions), dim=-2) |
|
|
|
|
|
n = einsum(directions, directions, "... n i, ... n j -> ... n i j") |
|
n = n - torch.eye(3, dtype=origins.dtype, device=origins.device) |
|
|
|
|
|
lhs = reduce(n, "... n i j -> ... i j", "sum") |
|
|
|
|
|
rhs = einsum(n, origins, "... n i j, ... n j -> ... n i") |
|
rhs = reduce(rhs, "... n i -> ... i", "sum") |
|
|
|
|
|
return torch.linalg.lstsq(lhs, rhs).solution |
|
|
|
|
|
def normalize(a: Float[Tensor, "*#batch dim"]) -> Float[Tensor, "*#batch dim"]: |
|
return a / a.norm(dim=-1, keepdim=True) |
|
|
|
|
|
def generate_coordinate_frame( |
|
y: Float[Tensor, "*#batch 3"], |
|
z: Float[Tensor, "*#batch 3"], |
|
) -> Float[Tensor, "*batch 3 3"]: |
|
"""Generate a coordinate frame given perpendicular, unit-length Y and Z vectors.""" |
|
y, z = torch.broadcast_tensors(y, z) |
|
return torch.stack([y.cross(z), y, z], dim=-1) |
|
|
|
|
|
def generate_rotation_coordinate_frame( |
|
a: Float[Tensor, "*#batch 3"], |
|
b: Float[Tensor, "*#batch 3"], |
|
eps: float = 1e-4, |
|
) -> Float[Tensor, "*batch 3 3"]: |
|
"""Generate a coordinate frame where the Y direction is normal to the plane defined |
|
by unit vectors a and b. The other axes are arbitrary.""" |
|
device = a.device |
|
|
|
|
|
|
|
b = b.detach().clone() |
|
parallel = (einsum(a, b, "... i, ... i -> ...").abs() - 1).abs() < eps |
|
b[parallel] = torch.tensor([0, 0, 1], dtype=b.dtype, device=device) |
|
parallel = (einsum(a, b, "... i, ... i -> ...").abs() - 1).abs() < eps |
|
b[parallel] = torch.tensor([0, 1, 0], dtype=b.dtype, device=device) |
|
|
|
|
|
return generate_coordinate_frame(normalize(a.cross(b)), a) |
|
|
|
|
|
def matrix_to_euler( |
|
rotations: Float[Tensor, "*batch 3 3"], |
|
pattern: str, |
|
) -> Float[Tensor, "*batch 3"]: |
|
*batch, _, _ = rotations.shape |
|
rotations = rotations.reshape(-1, 3, 3) |
|
angles_np = R.from_matrix(rotations.detach().cpu().numpy()).as_euler(pattern) |
|
rotations = torch.tensor(angles_np, dtype=rotations.dtype, device=rotations.device) |
|
return rotations.reshape(*batch, 3) |
|
|
|
|
|
def euler_to_matrix( |
|
rotations: Float[Tensor, "*batch 3"], |
|
pattern: str, |
|
) -> Float[Tensor, "*batch 3 3"]: |
|
*batch, _ = rotations.shape |
|
rotations = rotations.reshape(-1, 3) |
|
matrix_np = R.from_euler(pattern, rotations.detach().cpu().numpy()).as_matrix() |
|
rotations = torch.tensor(matrix_np, dtype=rotations.dtype, device=rotations.device) |
|
return rotations.reshape(*batch, 3, 3) |
|
|
|
|
|
def extrinsics_to_pivot_parameters( |
|
extrinsics: Float[Tensor, "*#batch 4 4"], |
|
pivot_coordinate_frame: Float[Tensor, "*#batch 3 3"], |
|
pivot_point: Float[Tensor, "*#batch 3"], |
|
) -> Float[Tensor, "*batch 5"]: |
|
"""Convert the extrinsics to a representation with 5 degrees of freedom: |
|
1. Distance from pivot point in the "X" (look cross pivot axis) direction. |
|
2. Distance from pivot point in the "Y" (pivot axis) direction. |
|
3. Distance from pivot point in the Z (look) direction |
|
4. Angle in plane |
|
5. Twist (rotation not in plane) |
|
""" |
|
|
|
|
|
pivot_axis = pivot_coordinate_frame[..., :, 1] |
|
|
|
|
|
translation_frame = generate_coordinate_frame(pivot_axis, extrinsics[..., :3, 2]) |
|
origin = extrinsics[..., :3, 3] |
|
delta = pivot_point - origin |
|
translation = einsum(translation_frame, delta, "... i j, ... i -> ... j") |
|
|
|
|
|
inverted = pivot_coordinate_frame.inverse() @ extrinsics[..., :3, :3] |
|
y, _, z = matrix_to_euler(inverted, "YXZ").unbind(dim=-1) |
|
|
|
return torch.cat([translation, y[..., None], z[..., None]], dim=-1) |
|
|
|
|
|
def pivot_parameters_to_extrinsics( |
|
parameters: Float[Tensor, "*#batch 5"], |
|
pivot_coordinate_frame: Float[Tensor, "*#batch 3 3"], |
|
pivot_point: Float[Tensor, "*#batch 3"], |
|
) -> Float[Tensor, "*batch 4 4"]: |
|
translation, y, z = parameters.split((3, 1, 1), dim=-1) |
|
|
|
euler = torch.cat((y, torch.zeros_like(y), z), dim=-1) |
|
rotation = pivot_coordinate_frame @ euler_to_matrix(euler, "YXZ") |
|
|
|
|
|
pivot_axis = pivot_coordinate_frame[..., :, 1] |
|
|
|
translation_frame = generate_coordinate_frame(pivot_axis, rotation[..., :3, 2]) |
|
delta = einsum(translation_frame, translation, "... i j, ... j -> ... i") |
|
origin = pivot_point - delta |
|
|
|
*batch, _ = origin.shape |
|
extrinsics = torch.eye(4, dtype=parameters.dtype, device=parameters.device) |
|
extrinsics = extrinsics.broadcast_to((*batch, 4, 4)).clone() |
|
extrinsics[..., 3, 3] = 1 |
|
extrinsics[..., :3, :3] = rotation |
|
extrinsics[..., :3, 3] = origin |
|
return extrinsics |
|
|
|
|
|
def interpolate_circular( |
|
a: Float[Tensor, "*#batch"], |
|
b: Float[Tensor, "*#batch"], |
|
t: Float[Tensor, "*#batch"], |
|
) -> Float[Tensor, " *batch"]: |
|
a, b, t = torch.broadcast_tensors(a, b, t) |
|
|
|
tau = 2 * torch.pi |
|
a = a % tau |
|
b = b % tau |
|
|
|
|
|
d = (b - a).abs() |
|
a_left = a - tau |
|
d_left = (b - a_left).abs() |
|
a_right = a + tau |
|
d_right = (b - a_right).abs() |
|
use_d = (d < d_left) & (d < d_right) |
|
use_d_left = (d_left < d_right) & (~use_d) |
|
use_d_right = (~use_d) & (~use_d_left) |
|
|
|
result = a + (b - a) * t |
|
result[use_d_left] = (a_left + (b - a_left) * t)[use_d_left] |
|
result[use_d_right] = (a_right + (b - a_right) * t)[use_d_right] |
|
|
|
return result |
|
|
|
|
|
def interpolate_pivot_parameters( |
|
initial: Float[Tensor, "*#batch 5"], |
|
final: Float[Tensor, "*#batch 5"], |
|
t: Float[Tensor, " time_step"], |
|
) -> Float[Tensor, "*batch time_step 5"]: |
|
initial = rearrange(initial, "... d -> ... () d") |
|
final = rearrange(final, "... d -> ... () d") |
|
t = rearrange(t, "t -> t ()") |
|
ti, ri = initial.split((3, 2), dim=-1) |
|
tf, rf = final.split((3, 2), dim=-1) |
|
|
|
t_lerp = ti + (tf - ti) * t |
|
r_lerp = interpolate_circular(ri, rf, t) |
|
|
|
return torch.cat((t_lerp, r_lerp), dim=-1) |
|
|
|
|
|
@torch.no_grad() |
|
def interpolate_extrinsics( |
|
initial: Float[Tensor, "*#batch 4 4"], |
|
final: Float[Tensor, "*#batch 4 4"], |
|
t: Float[Tensor, " time_step"], |
|
eps: float = 1e-4, |
|
) -> Float[Tensor, "*batch time_step 4 4"]: |
|
"""Interpolate extrinsics by rotating around their "focus point," which is the |
|
least-squares intersection between the look vectors of the initial and final |
|
extrinsics. |
|
""" |
|
|
|
initial = initial.type(torch.float64) |
|
final = final.type(torch.float64) |
|
t = t.type(torch.float64) |
|
|
|
|
|
|
|
|
|
initial_look = initial[..., :3, 2] |
|
final_look = final[..., :3, 2] |
|
dot_products = einsum(initial_look, final_look, "... i, ... i -> ...") |
|
parallel_mask = (dot_products.abs() - 1).abs() < eps |
|
|
|
|
|
initial_origin = initial[..., :3, 3] |
|
final_origin = final[..., :3, 3] |
|
pivot_point = 0.5 * (initial_origin + final_origin) |
|
pivot_point[~parallel_mask] = intersect_rays( |
|
initial_origin[~parallel_mask], |
|
initial_look[~parallel_mask], |
|
final_origin[~parallel_mask], |
|
final_look[~parallel_mask], |
|
) |
|
|
|
|
|
pivot_frame = generate_rotation_coordinate_frame(initial_look, final_look, eps=eps) |
|
initial_params = extrinsics_to_pivot_parameters(initial, pivot_frame, pivot_point) |
|
final_params = extrinsics_to_pivot_parameters(final, pivot_frame, pivot_point) |
|
|
|
|
|
interpolated_params = interpolate_pivot_parameters(initial_params, final_params, t) |
|
|
|
|
|
return pivot_parameters_to_extrinsics( |
|
interpolated_params.type(torch.float32), |
|
rearrange(pivot_frame, "... i j -> ... () i j").type(torch.float32), |
|
rearrange(pivot_point, "... xyz -> ... () xyz").type(torch.float32), |
|
) |
|
|