|
from typing import Literal, Optional |
|
|
|
import torch |
|
from einops import einsum, repeat |
|
from jaxtyping import Float |
|
from torch import Tensor |
|
|
|
from .coordinate_conversion import generate_conversions |
|
from .rendering import render_over_image |
|
from .types import Pair, Scalar, Vector, sanitize_scalar, sanitize_vector |
|
|
|
|
|
def draw_lines( |
|
image: Float[Tensor, "3 height width"], |
|
start: Vector, |
|
end: Vector, |
|
color: Vector, |
|
width: Scalar, |
|
cap: Literal["butt", "round", "square"] = "round", |
|
num_msaa_passes: int = 1, |
|
x_range: Optional[Pair] = None, |
|
y_range: Optional[Pair] = None, |
|
) -> Float[Tensor, "3 height width"]: |
|
device = image.device |
|
start = sanitize_vector(start, 2, device) |
|
end = sanitize_vector(end, 2, device) |
|
color = sanitize_vector(color, 3, device) |
|
width = sanitize_scalar(width, device) |
|
(num_lines,) = torch.broadcast_shapes( |
|
start.shape[0], |
|
end.shape[0], |
|
color.shape[0], |
|
width.shape, |
|
) |
|
|
|
|
|
_, h, w = image.shape |
|
world_to_pixel, _ = generate_conversions((h, w), device, x_range, y_range) |
|
start = world_to_pixel(start) |
|
end = world_to_pixel(end) |
|
|
|
def color_function( |
|
xy: Float[Tensor, "point 2"], |
|
) -> Float[Tensor, "point 4"]: |
|
|
|
delta = end - start |
|
delta_norm = delta.norm(dim=-1, keepdim=True) |
|
u_delta = delta / delta_norm |
|
|
|
|
|
indicator = xy - start[:, None] |
|
|
|
|
|
extra = 0.5 * width[:, None] if cap == "square" else 0 |
|
parallel = einsum(u_delta, indicator, "l xy, l s xy -> l s") |
|
parallel_inside_line = (parallel <= delta_norm + extra) & (parallel > -extra) |
|
|
|
|
|
perpendicular = indicator - parallel[..., None] * u_delta[:, None] |
|
perpendicular_inside_line = perpendicular.norm(dim=-1) < 0.5 * width[:, None] |
|
|
|
inside_line = parallel_inside_line & perpendicular_inside_line |
|
|
|
|
|
if cap == "round": |
|
near_start = indicator.norm(dim=-1) < 0.5 * width[:, None] |
|
inside_line |= near_start |
|
end_indicator = indicator = xy - end[:, None] |
|
near_end = end_indicator.norm(dim=-1) < 0.5 * width[:, None] |
|
inside_line |= near_end |
|
|
|
|
|
selectable_color = color.broadcast_to((num_lines, 3)) |
|
arrangement = inside_line * torch.arange(num_lines, device=device)[:, None] |
|
top_color = selectable_color.gather( |
|
dim=0, |
|
index=repeat(arrangement.argmax(dim=0), "s -> s c", c=3), |
|
) |
|
rgba = torch.cat((top_color, inside_line.any(dim=0).float()[:, None]), dim=-1) |
|
|
|
return rgba |
|
|
|
return render_over_image(image, color_function, device, num_passes=num_msaa_passes) |
|
|