Update app.py
Browse files
app.py
CHANGED
@@ -27,6 +27,8 @@ from src.model.model.anysplat import AnySplat
|
|
27 |
from src.model.ply_export import export_ply
|
28 |
from src.utils.image import process_image
|
29 |
|
|
|
|
|
30 |
|
31 |
# 1) Core model inference
|
32 |
def get_reconstructed_scene(outdir, model, device):
|
@@ -77,7 +79,7 @@ def get_reconstructed_scene(outdir, model, device):
|
|
77 |
|
78 |
|
79 |
# 2) Handle uploaded video/images --> produce target_dir + images
|
80 |
-
def handle_uploads(input_video, input_images):
|
81 |
"""
|
82 |
Create a new 'target_dir' + 'images' subfolder, and place user-uploaded
|
83 |
images or extracted frames from video into it. Return (target_dir, image_paths).
|
@@ -86,9 +88,8 @@ def handle_uploads(input_video, input_images):
|
|
86 |
gc.collect()
|
87 |
torch.cuda.empty_cache()
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
target_dir = f"input_images_{timestamp}"
|
92 |
target_dir_images = os.path.join(target_dir, "images")
|
93 |
|
94 |
# Clean up if somehow that folder already exists
|
@@ -160,34 +161,24 @@ def update_gallery_on_upload(input_video, input_images):
|
|
160 |
|
161 |
|
162 |
@spaces.GPU()
|
163 |
-
|
164 |
-
def gradio_demo(
|
165 |
-
target_dir,
|
166 |
-
):
|
167 |
-
"""
|
168 |
-
Perform reconstruction using the already-created target_dir/images.
|
169 |
-
"""
|
170 |
-
if not os.path.isdir(target_dir) or target_dir == "None":
|
171 |
-
return None, None, None
|
172 |
|
173 |
start_time = time.time()
|
174 |
gc.collect()
|
175 |
torch.cuda.empty_cache()
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
all_files = (
|
180 |
-
sorted(os.listdir(
|
181 |
-
if os.path.isdir(
|
182 |
else []
|
183 |
)
|
184 |
all_files = [f"{i}: {filename}" for i, filename in enumerate(all_files)]
|
185 |
|
186 |
print("Running run_model...")
|
187 |
with torch.no_grad():
|
188 |
-
plyfile, video, depth_colored = get_reconstructed_scene(
|
189 |
-
target_dir, model, device
|
190 |
-
)
|
191 |
|
192 |
end_time = time.time()
|
193 |
print(f"Total time: {end_time - start_time:.2f} seconds (including IO)")
|
@@ -195,11 +186,21 @@ def gradio_demo(
|
|
195 |
return plyfile, video, depth_colored
|
196 |
|
197 |
|
198 |
-
def
|
199 |
"""
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
"""
|
202 |
-
return
|
203 |
|
204 |
|
205 |
if __name__ == "__main__":
|
@@ -264,8 +265,9 @@ if __name__ == "__main__":
|
|
264 |
}
|
265 |
"""
|
266 |
with gr.Blocks(css=css, title="AnySplat Demo", theme=theme) as demo:
|
267 |
-
|
268 |
-
|
|
|
269 |
target_dir_output = gr.Textbox(label="Target Dir", visible=False, value="None")
|
270 |
is_example = gr.Textbox(label="is_example", visible=False, value="None")
|
271 |
num_images = gr.Textbox(label="num_images", visible=False, value="None")
|
@@ -275,7 +277,6 @@ if __name__ == "__main__":
|
|
275 |
|
276 |
with gr.Column(elem_id="col-container"):
|
277 |
|
278 |
-
|
279 |
gr.Markdown(
|
280 |
""" # AnySplat – Feed-forward 3D Gaussian Splatting from Unconstrained Views
|
281 |
|
@@ -329,92 +330,60 @@ if __name__ == "__main__":
|
|
329 |
|
330 |
# ---------------------- Examples section ----------------------
|
331 |
|
332 |
-
examples = [
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
]
|
349 |
-
|
350 |
-
def example_pipeline(
|
351 |
-
input_images,
|
352 |
-
input_video,
|
353 |
-
dataset_name,
|
354 |
-
scene_name,
|
355 |
-
num_images_str,
|
356 |
-
image_type,
|
357 |
-
is_example,
|
358 |
-
):
|
359 |
-
"""
|
360 |
-
1) Copy example images to new target_dir
|
361 |
-
2) Reconstruct
|
362 |
-
3) Return model3D + logs + new_dir + updated dropdown + gallery
|
363 |
-
We do NOT return is_example. It's just an input.
|
364 |
-
"""
|
365 |
-
target_dir, image_paths = handle_uploads(input_video, input_images)
|
366 |
-
plyfile, video, depth_colored = gradio_demo(target_dir)
|
367 |
-
return plyfile, video, depth_colored, target_dir, image_paths
|
368 |
|
369 |
-
gr.Examples(
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
)
|
391 |
-
|
392 |
-
gr.Markdown("<p style='text-align: center; font-style: italic; color: #666;'>We thank VGGT for their excellent gradio implementation!</p>")
|
393 |
-
|
394 |
submit_btn.click(
|
395 |
-
fn=
|
396 |
-
inputs=[],
|
397 |
-
outputs=[reconstruction_output, rgb_video, depth_video]
|
398 |
-
).then(
|
399 |
-
fn=gradio_demo,
|
400 |
-
inputs=[
|
401 |
-
target_dir_output,
|
402 |
-
],
|
403 |
-
outputs=[reconstruction_output, rgb_video, depth_video],
|
404 |
-
).then(
|
405 |
-
fn=lambda: "False", inputs=[], outputs=[is_example]
|
406 |
-
)
|
407 |
|
408 |
input_video.change(
|
409 |
fn=update_gallery_on_upload,
|
410 |
-
inputs=[input_video, input_images],
|
411 |
outputs=[reconstruction_output, target_dir_output, image_gallery],
|
412 |
)
|
413 |
input_images.change(
|
414 |
fn=update_gallery_on_upload,
|
415 |
-
inputs=[input_video, input_images],
|
416 |
outputs=[reconstruction_output, target_dir_output, image_gallery],
|
417 |
)
|
418 |
demo.queue().launch(show_error=True, share=True)
|
419 |
-
|
420 |
-
# We thank VGGT for their excellent gradio implementation
|
|
|
27 |
from src.model.ply_export import export_ply
|
28 |
from src.utils.image import process_image
|
29 |
|
30 |
+
os.environ["ANYSPLAT_PROCESSED"] = f"{os.getcwd()}/proprocess_results"
|
31 |
+
|
32 |
|
33 |
# 1) Core model inference
|
34 |
def get_reconstructed_scene(outdir, model, device):
|
|
|
79 |
|
80 |
|
81 |
# 2) Handle uploaded video/images --> produce target_dir + images
|
82 |
+
def handle_uploads(input_video, input_images, session_id):
|
83 |
"""
|
84 |
Create a new 'target_dir' + 'images' subfolder, and place user-uploaded
|
85 |
images or extracted frames from video into it. Return (target_dir, image_paths).
|
|
|
88 |
gc.collect()
|
89 |
torch.cuda.empty_cache()
|
90 |
|
91 |
+
base_dir = os.path.join(os.environ["ANYSPLAT_PROCESSED"], session_id)
|
92 |
+
target_dir = base_dir
|
|
|
93 |
target_dir_images = os.path.join(target_dir, "images")
|
94 |
|
95 |
# Clean up if somehow that folder already exists
|
|
|
161 |
|
162 |
|
163 |
@spaces.GPU()
|
164 |
+
def generate_splat(images_folder, session_id=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
start_time = time.time()
|
167 |
gc.collect()
|
168 |
torch.cuda.empty_cache()
|
169 |
+
|
170 |
+
base_dir = os.path.join(os.environ["ANYSPLAT_PROCESSED"], session_id)
|
171 |
+
|
172 |
all_files = (
|
173 |
+
sorted(os.listdir(images_folder))
|
174 |
+
if os.path.isdir(images_folder)
|
175 |
else []
|
176 |
)
|
177 |
all_files = [f"{i}: {filename}" for i, filename in enumerate(all_files)]
|
178 |
|
179 |
print("Running run_model...")
|
180 |
with torch.no_grad():
|
181 |
+
plyfile, video, depth_colored = get_reconstructed_scene(base_dir, model, device)
|
|
|
|
|
182 |
|
183 |
end_time = time.time()
|
184 |
print(f"Total time: {end_time - start_time:.2f} seconds (including IO)")
|
|
|
186 |
return plyfile, video, depth_colored
|
187 |
|
188 |
|
189 |
+
def start_session(request: gr.Request):
|
190 |
"""
|
191 |
+
Initialize a new user session and return the session identifier.
|
192 |
+
|
193 |
+
This function is triggered when the Gradio demo loads and creates a unique
|
194 |
+
session hash that will be used to organize outputs and temporary files
|
195 |
+
for this specific user session.
|
196 |
+
|
197 |
+
Args:
|
198 |
+
request (gr.Request): Gradio request object containing session information
|
199 |
+
|
200 |
+
Returns:
|
201 |
+
str: Unique session hash identifier
|
202 |
"""
|
203 |
+
return request.session_hash
|
204 |
|
205 |
|
206 |
if __name__ == "__main__":
|
|
|
265 |
}
|
266 |
"""
|
267 |
with gr.Blocks(css=css, title="AnySplat Demo", theme=theme) as demo:
|
268 |
+
session_state = gr.State()
|
269 |
+
demo.load(start_session, outputs=[session_state])
|
270 |
+
|
271 |
target_dir_output = gr.Textbox(label="Target Dir", visible=False, value="None")
|
272 |
is_example = gr.Textbox(label="is_example", visible=False, value="None")
|
273 |
num_images = gr.Textbox(label="num_images", visible=False, value="None")
|
|
|
277 |
|
278 |
with gr.Column(elem_id="col-container"):
|
279 |
|
|
|
280 |
gr.Markdown(
|
281 |
""" # AnySplat – Feed-forward 3D Gaussian Splatting from Unconstrained Views
|
282 |
|
|
|
330 |
|
331 |
# ---------------------- Examples section ----------------------
|
332 |
|
333 |
+
# examples = [
|
334 |
+
# [None, "examples/video/re10k_1eca36ec55b88fe4.mp4", "re10k", "1eca36ec55b88fe4", "2", "Real", "True",],
|
335 |
+
# [None, "examples/video/bungeenerf_colosseum.mp4", "bungeenerf", "colosseum", "8", "Synthetic", "True",],
|
336 |
+
# [None, "examples/video/fox.mp4", "InstantNGP", "fox", "14", "Real", "True",],
|
337 |
+
# [None, "examples/video/matrixcity_street.mp4", "matrixcity", "street", "32", "Synthetic", "True",],
|
338 |
+
# [None, "examples/video/vrnerf_apartment.mp4", "vrnerf", "apartment", "32", "Real", "True",],
|
339 |
+
# [None, "examples/video/vrnerf_kitchen.mp4", "vrnerf", "kitchen", "17", "Real", "True",],
|
340 |
+
# [None, "examples/video/vrnerf_riverview.mp4", "vrnerf", "riverview", "12", "Real", "True",],
|
341 |
+
# [None, "examples/video/vrnerf_workshop.mp4", "vrnerf", "workshop", "32", "Real", "True",],
|
342 |
+
# [None, "examples/video/fillerbuster_ramen.mp4", "fillerbuster", "ramen", "32", "Real", "True",],
|
343 |
+
# [None, "examples/video/meganerf_rubble.mp4", "meganerf", "rubble", "10", "Real", "True",],
|
344 |
+
# [None, "examples/video/llff_horns.mp4", "llff", "horns", "12", "Real", "True",],
|
345 |
+
# [None, "examples/video/llff_fortress.mp4", "llff", "fortress", "7", "Real", "True",],
|
346 |
+
# [None, "examples/video/dtu_scan_106.mp4", "dtu", "scan_106", "20", "Real", "True",],
|
347 |
+
# [None, "examples/video/horizongs_hillside_summer.mp4", "horizongs", "hillside_summer", "55", "Synthetic", "True",],
|
348 |
+
# [None, "examples/video/kitti360.mp4", "kitti360", "kitti360", "64", "Real", "True",],
|
349 |
+
# ]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
350 |
|
351 |
+
# gr.Examples(
|
352 |
+
# examples=examples,
|
353 |
+
# inputs=[
|
354 |
+
# input_images,
|
355 |
+
# input_video,
|
356 |
+
# dataset_name,
|
357 |
+
# scene_name,
|
358 |
+
# num_images,
|
359 |
+
# image_type,
|
360 |
+
# is_example,
|
361 |
+
# ],
|
362 |
+
# outputs=[
|
363 |
+
# reconstruction_output,
|
364 |
+
# rgb_video,
|
365 |
+
# depth_video,
|
366 |
+
# target_dir_output,
|
367 |
+
# image_gallery,
|
368 |
+
# ],
|
369 |
+
# fn=example_pipeline,
|
370 |
+
# cache_examples=False,
|
371 |
+
# examples_per_page=50,
|
372 |
+
# )
|
373 |
+
|
|
|
|
|
374 |
submit_btn.click(
|
375 |
+
fn=generate_splat,
|
376 |
+
inputs=[target_dir_output,],
|
377 |
+
outputs=[reconstruction_output, rgb_video, depth_video])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
378 |
|
379 |
input_video.change(
|
380 |
fn=update_gallery_on_upload,
|
381 |
+
inputs=[input_video, input_images, session_state],
|
382 |
outputs=[reconstruction_output, target_dir_output, image_gallery],
|
383 |
)
|
384 |
input_images.change(
|
385 |
fn=update_gallery_on_upload,
|
386 |
+
inputs=[input_video, input_images, session_state],
|
387 |
outputs=[reconstruction_output, target_dir_output, image_gallery],
|
388 |
)
|
389 |
demo.queue().launch(show_error=True, share=True)
|
|
|
|