# @package _global_ defaults: - /dataset@_group_.co3d: co3d - override /model/encoder: anysplat - override /model/encoder/backbone: croco - override /loss: [mse, lpips, depth_consis] # ablate: opacity loss wandb: name: co3d tags: [co3d, 448x448] model: encoder: gs_params_head_type: dpt_gs pose_free: true intrinsics_embed_loc: encoder intrinsics_embed_type: token pretrained_weights: '' voxel_size: 0.002 pred_pose: true anchor_feat_dim: 128 gs_prune: false # ablate: opacity loss pred_head_type: depth freeze_backbone: false distill: true render_conf: false conf_threshold: 0.1 freeze_module: patch_embed voxelize: true intermediate_layer_idx: [4, 11, 17, 23] dataset: co3d: input_image_shape: [224, 448] view_sampler: num_context_views: 24 num_target_views: 1 min_distance_between_context_views: 32 max_distance_between_context_views: 256 max_img_per_gpu: 24 # keep the same as num_context_views avg_pose: false intr_augment: true normalize_by_pts3d: false rescale_to_1cube: false optimizer: lr: 2e-4 warm_up_steps: 1000 backbone_lr_multiplier: 0.1 data_loader: train: batch_size: 1 # not used here trainer: max_steps: 30000 val_check_interval: 500 num_nodes: 1 accumulate_grad_batches: 1 precision: bf16-mixed checkpointing: load: null every_n_train_steps: 200 save_weights_only: false save_top_k: 5 train: pose_loss_alpha: 1.0 pose_loss_delta: 1.0 cxt_depth_weight: 0.0 weight_pose: 10.0 weight_depth: 0.0 weight_normal: 0.0 hydra: run: dir: output/exp_${wandb.name}/${now:%Y-%m-%d_%H-%M-%S} loss: mse: conf: false lpips: conf: false depth_consis: weight: 0.1 loss_type: MSE