from pathlib import Path import torch import os import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from src.misc.image_io import save_interpolated_video from src.model.ply_export import export_ply from src.model.model.anysplat import AnySplat from src.utils.image import process_image def main(): # Load the model from Hugging Face model = AnySplat.from_pretrained("lhjiang/anysplat") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) model.eval() for param in model.parameters(): param.requires_grad = False # Load Images image_folder = "examples/vrnerf/riverview" images = sorted([os.path.join(image_folder, f) for f in os.listdir(image_folder) if f.lower().endswith(('.png', '.jpg', '.jpeg'))]) images = [process_image(img_path) for img_path in images] images = torch.stack(images, dim=0).unsqueeze(0).to(device) # [1, K, 3, 448, 448] b, v, _, h, w = images.shape # Run Inference gaussians, pred_context_pose = model.inference((images+1)*0.5) # Save the results pred_all_extrinsic = pred_context_pose['extrinsic'] pred_all_intrinsic = pred_context_pose['intrinsic'] save_interpolated_video(pred_all_extrinsic, pred_all_intrinsic, b, h, w, gaussians, image_folder, model.decoder) export_ply(gaussians.means[0], gaussians.scales[0], gaussians.rotations[0], gaussians.harmonics[0], gaussians.opacities[0], Path(image_folder) / "gaussians.ply") if __name__ == "__main__": main()