import json from collections import defaultdict from contextlib import contextmanager from pathlib import Path from time import time import numpy as np import torch class Benchmarker: def __init__(self): self.execution_times = defaultdict(list) @contextmanager def time(self, tag: str, num_calls: int = 1): try: start_time = time() yield finally: end_time = time() for _ in range(num_calls): self.execution_times[tag].append((end_time - start_time) / num_calls) def dump(self, path: Path) -> None: path.parent.mkdir(exist_ok=True, parents=True) with path.open("w") as f: json.dump(dict(self.execution_times), f) def dump_memory(self, path: Path) -> None: path.parent.mkdir(exist_ok=True, parents=True) with path.open("w") as f: json.dump(torch.cuda.memory_stats()["allocated_bytes.all.peak"], f) def summarize(self) -> None: for tag, times in self.execution_times.items(): print(f"{tag}: {len(times)} calls, avg. {np.mean(times)} seconds per call")