# Copyright (C) 2024-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # # -------------------------------------------------------- # dpt head implementation for DUST3R # Downstream heads assume inputs of size B x N x C (where N is the number of tokens) ; # or if it takes as input the output at every layer, the attribute return_all_layers should be set to True # the forward function also takes as input a dictionnary img_info with key "height" and "width" # for PixelwiseTask, the output will be of dimension B x num_channels x H x W # -------------------------------------------------------- from einops import rearrange from typing import List, Tuple import torch import torch.nn as nn import torch.nn.functional as F # import dust3r.utils.path_to_croco from .dpt_block import DPTOutputAdapter, Interpolate, make_fusion_block from .head_modules import UnetExtractor, AppearanceTransformer, _init_weights from .postprocess import postprocess import torchvision def custom_interpolate( x: torch.Tensor, size: Tuple[int, int] = None, scale_factor: float = None, mode: str = "bilinear", align_corners: bool = True, ) -> torch.Tensor: """ Custom interpolate to avoid INT_MAX issues in nn.functional.interpolate. """ if size is None: size = (int(x.shape[-2] * scale_factor), int(x.shape[-1] * scale_factor)) INT_MAX = 1610612736 input_elements = size[0] * size[1] * x.shape[0] * x.shape[1] if input_elements > INT_MAX: chunks = torch.chunk(x, chunks=(input_elements // INT_MAX) + 1, dim=0) interpolated_chunks = [ nn.functional.interpolate(chunk, size=size, mode=mode, align_corners=align_corners) for chunk in chunks ] x = torch.cat(interpolated_chunks, dim=0) return x.contiguous() else: return nn.functional.interpolate(x, size=size, mode=mode, align_corners=align_corners) # class DPTOutputAdapter_fix(DPTOutputAdapter): # """ # Adapt croco's DPTOutputAdapter implementation for dust3r: # remove duplicated weigths, and fix forward for dust3r # """ # # def init(self, dim_tokens_enc=768): # super().init(dim_tokens_enc) # # these are duplicated weights # del self.act_1_postprocess # del self.act_2_postprocess # del self.act_3_postprocess # del self.act_4_postprocess # # self.scratch.refinenet1 = make_fusion_block(256 * 2, False, 1, expand=True) # self.scratch.refinenet2 = make_fusion_block(256 * 2, False, 1, expand=True) # self.scratch.refinenet3 = make_fusion_block(256 * 2, False, 1, expand=True) # # self.scratch.refinenet4 = make_fusion_block(256 * 2, False, 1) # # self.depth_encoder = UnetExtractor(in_channel=3) # self.feat_up = Interpolate(scale_factor=2, mode="bilinear", align_corners=True) # self.out_conv = nn.Conv2d(256+3+4, 256, kernel_size=3, padding=1) # self.out_relu = nn.ReLU(inplace=True) # # self.input_merger = nn.Sequential( # # nn.Conv2d(256+3+3+1, 256, kernel_size=3, padding=1), # nn.Conv2d(256+3+3, 256, kernel_size=3, padding=1), # nn.ReLU(), # ) # # def forward(self, encoder_tokens: List[torch.Tensor], depths, imgs, image_size=None, conf=None): # assert self.dim_tokens_enc is not None, 'Need to call init(dim_tokens_enc) function first' # # H, W = input_info['image_size'] # image_size = self.image_size if image_size is None else image_size # H, W = image_size # # Number of patches in height and width # N_H = H // (self.stride_level * self.P_H) # N_W = W // (self.stride_level * self.P_W) # # # Hook decoder onto 4 layers from specified ViT layers # layers = [encoder_tokens[hook] for hook in self.hooks] # # # Extract only task-relevant tokens and ignore global tokens. # layers = [self.adapt_tokens(l) for l in layers] # # # Reshape tokens to spatial representation # layers = [rearrange(l, 'b (nh nw) c -> b c nh nw', nh=N_H, nw=N_W) for l in layers] # # layers = [self.act_postprocess[idx](l) for idx, l in enumerate(layers)] # # Project layers to chosen feature dim # layers = [self.scratch.layer_rn[idx](l) for idx, l in enumerate(layers)] # # # get depth features # depth_features = self.depth_encoder(depths) # depth_feature1, depth_feature2, depth_feature3 = depth_features # # # Fuse layers using refinement stages # path_4 = self.scratch.refinenet4(layers[3])[:, :, :layers[2].shape[2], :layers[2].shape[3]] # path_3 = self.scratch.refinenet3(torch.cat([path_4, depth_feature3], dim=1), torch.cat([layers[2], depth_feature3], dim=1)) # path_2 = self.scratch.refinenet2(torch.cat([path_3, depth_feature2], dim=1), torch.cat([layers[1], depth_feature2], dim=1)) # path_1 = self.scratch.refinenet1(torch.cat([path_2, depth_feature1], dim=1), torch.cat([layers[0], depth_feature1], dim=1)) # # path_3 = self.scratch.refinenet3(path_4, layers[2], depth_feature3) # # path_2 = self.scratch.refinenet2(path_3, layers[1], depth_feature2) # # path_1 = self.scratch.refinenet1(path_2, layers[0], depth_feature1) # # path_1 = self.feat_up(path_1) # path_1 = torch.cat([path_1, imgs, depths], dim=1) # if conf is not None: # path_1 = torch.cat([path_1, conf], dim=1) # path_1 = self.input_merger(path_1) # # # Output head # out = self.head(path_1) # # return out class DPTOutputAdapter_fix(DPTOutputAdapter): """ Adapt croco's DPTOutputAdapter implementation for dust3r: remove duplicated weigths, and fix forward for dust3r """ def init(self, dim_tokens_enc=768): super().init(dim_tokens_enc) # these are duplicated weights del self.act_1_postprocess del self.act_2_postprocess del self.act_3_postprocess del self.act_4_postprocess self.feat_up = Interpolate(scale_factor=2, mode="bilinear", align_corners=True) # self.input_merger = nn.Sequential( # # nn.Conv2d(256+3+3+1, 256, kernel_size=3, padding=1), # # nn.Conv2d(3+6, 256, 7, 1, 3), # nn.Conv2d(3, 256, 7, 1, 3), # nn.ReLU(), # ) def forward(self, encoder_tokens: List[torch.Tensor], depths, imgs, image_size=None, conf=None): assert self.dim_tokens_enc is not None, 'Need to call init(dim_tokens_enc) function first' # H, W = input_info['image_size'] image_size = self.image_size if image_size is None else image_size H, W = image_size # Number of patches in height and width N_H = H // (self.stride_level * self.P_H) N_W = W // (self.stride_level * self.P_W) # Hook decoder onto 4 layers from specified ViT layers layers = [encoder_tokens[hook] for hook in self.hooks] # Extract only task-relevant tokens and ignore global tokens. layers = [self.adapt_tokens(l) for l in layers] # Reshape tokens to spatial representation layers = [rearrange(l, 'b (nh nw) c -> b c nh nw', nh=N_H, nw=N_W) for l in layers] layers = [self.act_postprocess[idx](l) for idx, l in enumerate(layers)] # Project layers to chosen feature dim layers = [self.scratch.layer_rn[idx](l) for idx, l in enumerate(layers)] # Fuse layers using refinement stages path_4 = self.scratch.refinenet4(layers[3])[:, :, :layers[2].shape[2], :layers[2].shape[3]] path_3 = self.scratch.refinenet3(path_4, layers[2]) path_2 = self.scratch.refinenet2(path_3, layers[1]) path_1 = self.scratch.refinenet1(path_2, layers[0]) # direct_img_feat = self.input_merger(imgs) # actually, we just do interpolate here # path_1 = self.feat_up(path_1) path_1 = custom_interpolate(path_1, size=(H, W), mode='bilinear', align_corners=True) # path_1 = F.interpolate(path_1, size=(H, W), mode='bilinear', align_corners=True) # path_1 = path_1 + direct_img_feat # path_1 = torch.cat([path_1, imgs], dim=1) # Output head # out = self.head(path_1) out = path_1 return out, [path_4, path_3, path_2] class PixelwiseTaskWithDPT(nn.Module): """ DPT module for dust3r, can return 3D points + confidence for all pixels""" def __init__(self, *, n_cls_token=0, hooks_idx=None, dim_tokens=None, output_width_ratio=1, num_channels=1, postprocess=None, depth_mode=None, conf_mode=None, **kwargs): super(PixelwiseTaskWithDPT, self).__init__() self.return_all_layers = True # backbone needs to return all layers self.postprocess = postprocess self.depth_mode = depth_mode self.conf_mode = conf_mode assert n_cls_token == 0, "Not implemented" dpt_args = dict(output_width_ratio=output_width_ratio, num_channels=num_channels, **kwargs) if hooks_idx is not None: dpt_args.update(hooks=hooks_idx) self.dpt = DPTOutputAdapter_fix(**dpt_args) dpt_init_args = {} if dim_tokens is None else {'dim_tokens_enc': dim_tokens} self.dpt.init(**dpt_init_args) def forward(self, x, depths, imgs, img_info, conf=None): out, interm_feats = self.dpt(x, depths, imgs, image_size=(img_info[0], img_info[1]), conf=conf) if self.postprocess: out = self.postprocess(out, self.depth_mode, self.conf_mode) return out, interm_feats class AttnBasedAppearanceHead(nn.Module): """ Attention head Appearence Reconstruction """ def __init__(self, num_channels, patch_size, feature_dim, last_dim, hooks_idx, dim_tokens, postprocess, depth_mode, conf_mode, head_type='gs_params'): super().__init__() self.num_channels = num_channels self.patch_size = patch_size self.hooks = hooks_idx assert len(set(dim_tokens)) == 1 self.tokenizer = nn.Linear(3 * self.patch_size[0] ** 2 + 512, dim_tokens[0], bias=False) self.C_feat = 128 self.vgg_feature_extractor = torchvision.models.vgg16(pretrained=True).features # Freeze the VGG parameters for param in self.vgg_feature_extractor.parameters(): param.requires_grad = False self.token_decoder = nn.Sequential( nn.Linear(dim_tokens[0] * (len(self.hooks) + 1), self.C_feat * (self.patch_size[0] ** 2)), nn.SiLU(), nn.Linear(self.C_feat * (self.patch_size[0] ** 2), self.C_feat * (self.patch_size[0] ** 2)), ) self.pixel_linear = nn.Linear(self.C_feat, self.num_channels) def img_pts_tokenizer(self, imgs): _, _, H, W = imgs.shape # Process images through VGG to extract features # imgs = imgs.permute(0, 2, 3, 1).contiguous() with torch.no_grad(): vgg_features = self.vgg_feature_extractor(imgs) # 1. concat original images with vgg features and then patchify vgg_features = F.interpolate(vgg_features, size=(H, W), mode='bilinear', align_corners=False) combined = torch.cat([imgs, vgg_features], dim=1) # [B, C+512, H, W] combined = combined.permute(0, 2, 3, 1).contiguous() patch_size = self.patch_size hh = H // patch_size[0] ww = W // patch_size[1] input_patches = rearrange(combined, "b (hh ph) (ww pw) c -> b (hh ww) (ph pw c)", hh=hh, ww=ww, ph=patch_size[0], pw=patch_size[1]) input_tokens = self.tokenizer(input_patches) # 2. only use vgg features, use a shallow conv to get the token # # Combine original images with VGG features # imgs = torch.cat([imgs, vgg_features], dim=1) # imgs = imgs.permute(0, 2, 3, 1).flatten(1, 2).contiguous() # # Pachify # patch_size = self.patch_size # hh = H // patch_size[0] # ww = W // patch_size[1] # input = rearrange(imgs, "b (hh ph ww pw) d -> b (hh ww) (ph pw d)", hh=hh, ww=ww, ph=patch_size[0], pw=patch_size[1]) # Tokenize the input images input_tokens = self.tokenizer(input) return input_tokens def forward(self, x, depths, imgs, img_info, conf=None): B, V, H, W = img_info input_tokens = self.img_pts_tokenizer(imgs) # Hook decoder onto 4 layers from specified ViT layers layer_tokens = [x[hook] for hook in self.hooks] # [B, S, D] # layer_tokens.append(input_tokens) x = self.token_decoder(torch.cat(layer_tokens, dim=-1)) x = x.view(B*V, (H // self.patch_size[0]) * (W // self.patch_size[1]), self.patch_size[0]**2, self.C_feat).flatten(1, 2).contiguous() out_flat = self.pixel_linear(x) return out_flat.view(B*V, H, W, -1).permute(0, 3, 1, 2) # class Pixellevel_Linear_Pts3d(nn.Module): # """ # Pixel-level linear head for DUST3R # Each pixel outputs: 3D point (+ confidence) # """ # def __init__(self, dec_embed_dim, patch_size, depth_mode, conf_mode, has_conf=False, index_hook=[-1]): # super().__init__() # self.patch_size = patch_size # self.depth_mode = depth_mode # self.conf_mode = conf_mode # self.has_conf = has_conf # self.dec_embed_dim = dec_embed_dim # self.index_hook = index_hook # # Total embedding dimension per token (possibly concatenated) # D = self.dec_embed_dim * len(self.index_hook) # # Ensure divisible into pixel-level features # assert D % (self.patch_size**2) == 0, \ # f"Embedding dim {D} not divisible by patch_size^2 ({self.patch_size**2})" # # Feature dimension for each pixel # self.C_feat = D // (self.patch_size**2) * 4 # # Output channels: x,y,z (+ confidence) # self.out_dim = 3 + int(self.has_conf) # self.feat_expand = nn.Sequential(nn.Linear(D, 4*D), # nn.SiLU(), # nn.Linear(4*D, 4*D) # ) # # Per-pixel linear head # self.pixel_linear = nn.Linear(self.C_feat, self.out_dim) # def setup(self, croconet): # pass # def forward(self, decout, img_shape): # H, W = img_shape # # Combine specified decoder tokens: B x num_patches x D # tokens = [decout[i] for i in self.index_hook] # x = torch.cat(tokens, dim=-1) # B, S, D # x = self.feat_expand(x) # B, S, D = x.shape # # Validate pixel count # assert S * (self.patch_size**2) == H * W, \ # f"Mismatch: S*ps^2 ({S*self.patch_size**2}) != H*W ({H*W})" # # 1. Reshape embedding into pixel features # # x -> B, S, (ps^2), C_feat -> flatten to B, (S*ps^2), C_feat # x = x.view(B, S, self.patch_size**2, self.C_feat) # x = x.reshape(B, S * self.patch_size**2, self.C_feat) # # 2. Per-pixel linear output # out_flat = self.pixel_linear(x) # B, S*ps^2, out_dim # # 3. Reshape to image map: B x out_dim x H x W # out = out_flat.permute(0, 2, 1).view(B, self.out_dim, H, W) # # 4. Postprocess depth/conf # return out def create_gs_linear_head(net, has_conf=False, out_nchan=3, postprocess_func=postprocess): """ return PixelwiseTaskWithDPT for given net params """ assert net.dec_depth > 9 l2 = net.dec_depth feature_dim = net.feature_dim last_dim = feature_dim//2 ed = net.enc_embed_dim dd = net.dec_embed_dim try: patch_size = net.patch_size except: patch_size = (16, 16) return AttnBasedAppearanceHead(num_channels=out_nchan + has_conf, patch_size=patch_size, feature_dim=feature_dim, last_dim=last_dim, hooks_idx=[0, l2*2//4, l2*3//4, l2], dim_tokens=[ed, dd, dd, dd], postprocess=postprocess_func, depth_mode=net.depth_mode, conf_mode=net.conf_mode, head_type='gs_params')