# Copyright (C) 2024-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # # -------------------------------------------------------- # dpt head implementation for DUST3R # Downstream heads assume inputs of size B x N x C (where N is the number of tokens) ; # or if it takes as input the output at every layer, the attribute return_all_layers should be set to True # the forward function also takes as input a dictionnary img_info with key "height" and "width" # for PixelwiseTask, the output will be of dimension B x num_channels x H x W # -------------------------------------------------------- from einops import rearrange from typing import List import torch import torch.nn as nn import torch.nn.functional as F # import dust3r.utils.path_to_croco from .dpt_block import DPTOutputAdapter, Interpolate, make_fusion_block from src.model.encoder.vggt.heads.dpt_head import DPTHead from .head_modules import UnetExtractor, AppearanceTransformer, _init_weights from .postprocess import postprocess # def __init__(self, # num_channels: int = 1, # stride_level: int = 1, # patch_size: Union[int, Tuple[int, int]] = 16, # main_tasks: Iterable[str] = ('rgb',), # hooks: List[int] = [2, 5, 8, 11], # layer_dims: List[int] = [96, 192, 384, 768], # feature_dim: int = 256, # last_dim: int = 32, # use_bn: bool = False, # dim_tokens_enc: Optional[int] = None, # head_type: str = 'regression', # output_width_ratio=1, class VGGT_DPT_GS_Head(DPTHead): def __init__(self, dim_in: int, patch_size: int = 14, output_dim: int = 83, activation: str = "inv_log", conf_activation: str = "expp1", features: int = 256, out_channels: List[int] = [256, 512, 1024, 1024], intermediate_layer_idx: List[int] = [4, 11, 17, 23], pos_embed: bool = True, feature_only: bool = False, down_ratio: int = 1, ): super().__init__(dim_in, patch_size, output_dim, activation, conf_activation, features, out_channels, intermediate_layer_idx, pos_embed, feature_only, down_ratio) head_features_1 = 128 head_features_2 = 128 if output_dim > 50 else 32 # sh=0, head_features_2 = 32; sh=4, head_features_2 = 128 self.input_merger = nn.Sequential( nn.Conv2d(3, head_features_2, 7, 1, 3), nn.ReLU(), ) self.scratch.output_conv2 = nn.Sequential( nn.Conv2d(head_features_1, head_features_2, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.Conv2d(head_features_2, output_dim, kernel_size=1, stride=1, padding=0), ) def forward(self, encoder_tokens: List[torch.Tensor], depths, imgs, patch_start_idx: int = 5, image_size=None, conf=None, frames_chunk_size: int = 8): # H, W = input_info['image_size'] B, S, _, H, W = imgs.shape image_size = self.image_size if image_size is None else image_size # If frames_chunk_size is not specified or greater than S, process all frames at once if frames_chunk_size is None or frames_chunk_size >= S: return self._forward_impl(encoder_tokens, imgs, patch_start_idx) # Otherwise, process frames in chunks to manage memory usage assert frames_chunk_size > 0 # Process frames in batches all_preds = [] for frames_start_idx in range(0, S, frames_chunk_size): frames_end_idx = min(frames_start_idx + frames_chunk_size, S) # Process batch of frames chunk_output = self._forward_impl( encoder_tokens, imgs, patch_start_idx, frames_start_idx, frames_end_idx ) all_preds.append(chunk_output) # Concatenate results along the sequence dimension return torch.cat(all_preds, dim=1) def _forward_impl(self, encoder_tokens: List[torch.Tensor], imgs, patch_start_idx: int = 5, frames_start_idx: int = None, frames_end_idx: int = None): if frames_start_idx is not None and frames_end_idx is not None: imgs = imgs[:, frames_start_idx:frames_end_idx] B, S, _, H, W = imgs.shape patch_h, patch_w = H // self.patch_size[0], W // self.patch_size[1] out = [] dpt_idx = 0 for layer_idx in self.intermediate_layer_idx: # x = encoder_tokens[layer_idx][:, :, patch_start_idx:] if len(encoder_tokens) > 10: x = encoder_tokens[layer_idx][:, :, patch_start_idx:] else: list_idx = self.intermediate_layer_idx.index(layer_idx) x = encoder_tokens[list_idx][:, :, patch_start_idx:] # Select frames if processing a chunk if frames_start_idx is not None and frames_end_idx is not None: x = x[:, frames_start_idx:frames_end_idx].contiguous() x = x.view(B * S, -1, x.shape[-1]) x = self.norm(x) x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w)) x = self.projects[dpt_idx](x) if self.pos_embed: x = self._apply_pos_embed(x, W, H) x = self.resize_layers[dpt_idx](x) out.append(x) dpt_idx += 1 # Fuse features from multiple layers. out = self.scratch_forward(out) direct_img_feat = self.input_merger(imgs.flatten(0,1)) out = F.interpolate(out, size=(H, W), mode='bilinear', align_corners=True) out = out + direct_img_feat if self.pos_embed: out = self._apply_pos_embed(out, W, H) out = self.scratch.output_conv2(out) out = out.view(B, S, *out.shape[1:]) return out class PixelwiseTaskWithDPT(nn.Module): """ DPT module for dust3r, can return 3D points + confidence for all pixels""" def __init__(self, *, n_cls_token=0, hooks_idx=None, dim_tokens=None, output_width_ratio=1, num_channels=1, postprocess=None, depth_mode=None, conf_mode=None, **kwargs): super(PixelwiseTaskWithDPT, self).__init__() self.return_all_layers = True # backbone needs to return all layers self.postprocess = postprocess self.depth_mode = depth_mode self.conf_mode = conf_mode assert n_cls_token == 0, "Not implemented" dpt_args = dict(output_width_ratio=output_width_ratio, num_channels=num_channels, **kwargs) if hooks_idx is not None: dpt_args.update(hooks=hooks_idx) self.dpt = DPTOutputAdapter_fix(**dpt_args) dpt_init_args = {} if dim_tokens is None else {'dim_tokens_enc': dim_tokens} self.dpt.init(**dpt_init_args) def forward(self, x, depths, imgs, img_info, conf=None): out, interm_feats = self.dpt(x, depths, imgs, image_size=(img_info[0], img_info[1]), conf=conf) if self.postprocess: out = self.postprocess(out, self.depth_mode, self.conf_mode) return out, interm_feats def create_gs_dpt_head(net, has_conf=False, out_nchan=3, postprocess_func=postprocess): """ return PixelwiseTaskWithDPT for given net params """ assert net.dec_depth > 9 l2 = net.dec_depth feature_dim = net.feature_dim last_dim = feature_dim//2 ed = net.enc_embed_dim dd = net.dec_embed_dim try: patch_size = net.patch_size except: patch_size = (16, 16) return PixelwiseTaskWithDPT(num_channels=out_nchan + has_conf, patch_size=patch_size, feature_dim=feature_dim, last_dim=last_dim, hooks_idx=[0, l2*2//4, l2*3//4, l2], dim_tokens=[ed, dd, dd, dd], postprocess=postprocess_func, depth_mode=net.depth_mode, conf_mode=net.conf_mode, head_type='gs_params')