# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # Inspired by https://github.com/DepthAnything/Depth-Anything-V2 import os from typing import List, Dict, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from .head_act import activate_head from .utils import create_uv_grid, position_grid_to_embed class DPTHead(nn.Module): """ DPT Head for dense prediction tasks. This implementation follows the architecture described in "Vision Transformers for Dense Prediction" (https://arxiv.org/abs/2103.13413). The DPT head processes features from a vision transformer backbone and produces dense predictions by fusing multi-scale features. Args: dim_in (int): Input dimension (channels). patch_size (int, optional): Patch size. Default is 14. output_dim (int, optional): Number of output channels. Default is 4. activation (str, optional): Activation type. Default is "inv_log". conf_activation (str, optional): Confidence activation type. Default is "expp1". features (int, optional): Feature channels for intermediate representations. Default is 256. out_channels (List[int], optional): Output channels for each intermediate layer. intermediate_layer_idx (List[int], optional): Indices of layers from aggregated tokens used for DPT. pos_embed (bool, optional): Whether to use positional embedding. Default is True. feature_only (bool, optional): If True, return features only without the last several layers and activation head. Default is False. down_ratio (int, optional): Downscaling factor for the output resolution. Default is 1. """ def __init__( self, dim_in: int, patch_size: int = 14, output_dim: int = 4, activation: str = "inv_log", conf_activation: str = "expp1", features: int = 256, out_channels: List[int] = [256, 512, 1024, 1024], intermediate_layer_idx: List[int] = [4, 11, 17, 23], pos_embed: bool = True, feature_only: bool = False, down_ratio: int = 1, ) -> None: super(DPTHead, self).__init__() self.patch_size = patch_size self.activation = activation self.conf_activation = conf_activation self.pos_embed = pos_embed self.feature_only = feature_only self.down_ratio = down_ratio self.intermediate_layer_idx = intermediate_layer_idx self.norm = nn.LayerNorm(dim_in) # Projection layers for each output channel from tokens. self.projects = nn.ModuleList( [ nn.Conv2d( in_channels=dim_in, out_channels=oc, kernel_size=1, stride=1, padding=0, ) for oc in out_channels ] ) # Resize layers for upsampling feature maps. self.resize_layers = nn.ModuleList( [ nn.ConvTranspose2d( in_channels=out_channels[0], out_channels=out_channels[0], kernel_size=4, stride=4, padding=0 ), nn.ConvTranspose2d( in_channels=out_channels[1], out_channels=out_channels[1], kernel_size=2, stride=2, padding=0 ), nn.Identity(), nn.Conv2d( in_channels=out_channels[3], out_channels=out_channels[3], kernel_size=3, stride=2, padding=1 ), ] ) self.scratch = _make_scratch( out_channels, features, expand=False, ) # Attach additional modules to scratch. self.scratch.stem_transpose = None self.scratch.refinenet1 = _make_fusion_block(features) self.scratch.refinenet2 = _make_fusion_block(features) self.scratch.refinenet3 = _make_fusion_block(features) self.scratch.refinenet4 = _make_fusion_block(features, has_residual=False) head_features_1 = features head_features_2 = 32 if feature_only: self.scratch.output_conv1 = nn.Conv2d(head_features_1, head_features_1, kernel_size=3, stride=1, padding=1) else: self.scratch.output_conv1 = nn.Conv2d( head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1 ) conv2_in_channels = head_features_1 // 2 self.scratch.output_conv2 = nn.Sequential( nn.Conv2d(conv2_in_channels, head_features_2, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.Conv2d(head_features_2, output_dim, kernel_size=1, stride=1, padding=0), ) def forward( self, aggregated_tokens_list: List[torch.Tensor], images: torch.Tensor, patch_start_idx: int, frames_chunk_size: int = 8, ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: """ Forward pass through the DPT head, supports processing by chunking frames. Args: aggregated_tokens_list (List[Tensor]): List of token tensors from different transformer layers. images (Tensor): Input images with shape [B, S, 3, H, W], in range [0, 1]. patch_start_idx (int): Starting index for patch tokens in the token sequence. Used to separate patch tokens from other tokens (e.g., camera or register tokens). frames_chunk_size (int, optional): Number of frames to process in each chunk. If None or larger than S, all frames are processed at once. Default: 8. Returns: Tensor or Tuple[Tensor, Tensor]: - If feature_only=True: Feature maps with shape [B, S, C, H, W] - Otherwise: Tuple of (predictions, confidence) both with shape [B, S, 1, H, W] """ B, S, _, H, W = images.shape # If frames_chunk_size is not specified or greater than S, process all frames at once if frames_chunk_size is None or frames_chunk_size >= S: return self._forward_impl(aggregated_tokens_list, images, patch_start_idx) # Otherwise, process frames in chunks to manage memory usage assert frames_chunk_size > 0 # Process frames in batches all_preds = [] all_conf = [] for frames_start_idx in range(0, S, frames_chunk_size): frames_end_idx = min(frames_start_idx + frames_chunk_size, S) # Process batch of frames if self.feature_only: chunk_output = self._forward_impl( aggregated_tokens_list, images, patch_start_idx, frames_start_idx, frames_end_idx ) all_preds.append(chunk_output) else: chunk_preds, chunk_conf = self._forward_impl( aggregated_tokens_list, images, patch_start_idx, frames_start_idx, frames_end_idx ) all_preds.append(chunk_preds) all_conf.append(chunk_conf) # Concatenate results along the sequence dimension if self.feature_only: return torch.cat(all_preds, dim=1) else: return torch.cat(all_preds, dim=1), torch.cat(all_conf, dim=1) def _forward_impl( self, aggregated_tokens_list: List[torch.Tensor], images: torch.Tensor, patch_start_idx: int, frames_start_idx: int = None, frames_end_idx: int = None, ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: """ Implementation of the forward pass through the DPT head. This method processes a specific chunk of frames from the sequence. Args: aggregated_tokens_list (List[Tensor]): List of token tensors from different transformer layers. images (Tensor): Input images with shape [B, S, 3, H, W]. patch_start_idx (int): Starting index for patch tokens. frames_start_idx (int, optional): Starting index for frames to process. frames_end_idx (int, optional): Ending index for frames to process. Returns: Tensor or Tuple[Tensor, Tensor]: Feature maps or (predictions, confidence). """ if frames_start_idx is not None and frames_end_idx is not None: images = images[:, frames_start_idx:frames_end_idx] B, S, _, H, W = images.shape patch_h, patch_w = H // self.patch_size, W // self.patch_size out = [] dpt_idx = 0 for layer_idx in self.intermediate_layer_idx: # x = aggregated_tokens_list[layer_idx][:, :, patch_start_idx:] if len(aggregated_tokens_list) > 10: x = aggregated_tokens_list[layer_idx][:, :, patch_start_idx:] else: list_idx = self.intermediate_layer_idx.index(layer_idx) x = aggregated_tokens_list[list_idx][:, :, patch_start_idx:] # Select frames if processing a chunk if frames_start_idx is not None and frames_end_idx is not None: x = x[:, frames_start_idx:frames_end_idx].contiguous() x = x.view(B * S, -1, x.shape[-1]) x = self.norm(x) x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w)) x = self.projects[dpt_idx](x) if self.pos_embed: x = self._apply_pos_embed(x, W, H) x = self.resize_layers[dpt_idx](x) out.append(x) dpt_idx += 1 # Fuse features from multiple layers. out = self.scratch_forward(out) # Interpolate fused output to match target image resolution. out = custom_interpolate( out, (int(patch_h * self.patch_size / self.down_ratio), int(patch_w * self.patch_size / self.down_ratio)), mode="bilinear", align_corners=True, ) if self.pos_embed: out = self._apply_pos_embed(out, W, H) if self.feature_only: return out.view(B, S, *out.shape[1:]) out = self.scratch.output_conv2(out) preds, conf = activate_head(out, activation=self.activation, conf_activation=self.conf_activation) preds = preds.view(B, S, *preds.shape[1:]) conf = conf.view(B, S, *conf.shape[1:]) return preds, conf def _apply_pos_embed(self, x: torch.Tensor, W: int, H: int, ratio: float = 0.1) -> torch.Tensor: """ Apply positional embedding to tensor x. """ patch_w = x.shape[-1] patch_h = x.shape[-2] pos_embed = create_uv_grid(patch_w, patch_h, aspect_ratio=W / H, dtype=x.dtype, device=x.device) pos_embed = position_grid_to_embed(pos_embed, x.shape[1]) pos_embed = pos_embed * ratio pos_embed = pos_embed.permute(2, 0, 1)[None].expand(x.shape[0], -1, -1, -1) return x + pos_embed def scratch_forward(self, features: List[torch.Tensor]) -> torch.Tensor: """ Forward pass through the fusion blocks. Args: features (List[Tensor]): List of feature maps from different layers. Returns: Tensor: Fused feature map. """ layer_1, layer_2, layer_3, layer_4 = features layer_1_rn = self.scratch.layer1_rn(layer_1) layer_2_rn = self.scratch.layer2_rn(layer_2) layer_3_rn = self.scratch.layer3_rn(layer_3) layer_4_rn = self.scratch.layer4_rn(layer_4) out = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:]) del layer_4_rn, layer_4 out = self.scratch.refinenet3(out, layer_3_rn, size=layer_2_rn.shape[2:]) del layer_3_rn, layer_3 out = self.scratch.refinenet2(out, layer_2_rn, size=layer_1_rn.shape[2:]) del layer_2_rn, layer_2 out = self.scratch.refinenet1(out, layer_1_rn) del layer_1_rn, layer_1 out = self.scratch.output_conv1(out) return out ################################################################################ # Modules ################################################################################ def _make_fusion_block(features: int, size: int = None, has_residual: bool = True, groups: int = 1) -> nn.Module: return FeatureFusionBlock( features, nn.ReLU(inplace=True), deconv=False, bn=False, expand=False, align_corners=True, size=size, has_residual=has_residual, groups=groups, ) def _make_scratch(in_shape: List[int], out_shape: int, groups: int = 1, expand: bool = False) -> nn.Module: scratch = nn.Module() out_shape1 = out_shape out_shape2 = out_shape out_shape3 = out_shape if len(in_shape) >= 4: out_shape4 = out_shape if expand: out_shape1 = out_shape out_shape2 = out_shape * 2 out_shape3 = out_shape * 4 if len(in_shape) >= 4: out_shape4 = out_shape * 8 scratch.layer1_rn = nn.Conv2d( in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups ) scratch.layer2_rn = nn.Conv2d( in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups ) scratch.layer3_rn = nn.Conv2d( in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups ) if len(in_shape) >= 4: scratch.layer4_rn = nn.Conv2d( in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups ) return scratch class ResidualConvUnit(nn.Module): """Residual convolution module.""" def __init__(self, features, activation, bn, groups=1): """Init. Args: features (int): number of features """ super().__init__() self.bn = bn self.groups = groups self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups) self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups) self.norm1 = None self.norm2 = None self.activation = activation self.skip_add = nn.quantized.FloatFunctional() def forward(self, x): """Forward pass. Args: x (tensor): input Returns: tensor: output """ out = self.activation(x) out = self.conv1(out) if self.norm1 is not None: out = self.norm1(out) out = self.activation(out) out = self.conv2(out) if self.norm2 is not None: out = self.norm2(out) return self.skip_add.add(out, x) class FeatureFusionBlock(nn.Module): """Feature fusion block.""" def __init__( self, features, activation, deconv=False, bn=False, expand=False, align_corners=True, size=None, has_residual=True, groups=1, ): """Init. Args: features (int): number of features """ super(FeatureFusionBlock, self).__init__() self.deconv = deconv self.align_corners = align_corners self.groups = groups self.expand = expand out_features = features if self.expand == True: out_features = features // 2 self.out_conv = nn.Conv2d( features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=self.groups ) if has_residual: self.resConfUnit1 = ResidualConvUnit(features, activation, bn, groups=self.groups) self.has_residual = has_residual self.resConfUnit2 = ResidualConvUnit(features, activation, bn, groups=self.groups) self.skip_add = nn.quantized.FloatFunctional() self.size = size def forward(self, *xs, size=None): """Forward pass. Returns: tensor: output """ output = xs[0] if self.has_residual: res = self.resConfUnit1(xs[1]) output = self.skip_add.add(output, res) output = self.resConfUnit2(output) if (size is None) and (self.size is None): modifier = {"scale_factor": 2} elif size is None: modifier = {"size": self.size} else: modifier = {"size": size} output = custom_interpolate(output, **modifier, mode="bilinear", align_corners=self.align_corners) output = self.out_conv(output) return output def custom_interpolate( x: torch.Tensor, size: Tuple[int, int] = None, scale_factor: float = None, mode: str = "bilinear", align_corners: bool = True, ) -> torch.Tensor: """ Custom interpolate to avoid INT_MAX issues in nn.functional.interpolate. """ if size is None: size = (int(x.shape[-2] * scale_factor), int(x.shape[-1] * scale_factor)) INT_MAX = 1610612736 input_elements = size[0] * size[1] * x.shape[0] * x.shape[1] if input_elements > INT_MAX: chunks = torch.chunk(x, chunks=(input_elements // INT_MAX) + 1, dim=0) interpolated_chunks = [ nn.functional.interpolate(chunk, size=size, mode=mode, align_corners=align_corners) for chunk in chunks ] x = torch.cat(interpolated_chunks, dim=0) return x.contiguous() else: return nn.functional.interpolate(x, size=size, mode=mode, align_corners=align_corners)