# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import torch def batchify_unproject_depth_map_to_point_map( depth_map: torch.Tensor, extrinsics_cam: torch.Tensor, intrinsics_cam: torch.Tensor ) -> torch.Tensor: """ Unproject a batch of depth maps to 3D world coordinates. Args: depth_map (torch.Tensor): Batch of depth maps of shape (B, V, H, W, 1) or (B, V, H, W) extrinsics_cam (torch.Tensor): Batch of camera extrinsic matrices of shape (B, V, 3, 4) intrinsics_cam (torch.Tensor): Batch of camera intrinsic matrices of shape (B, V, 3, 3) Returns: torch.Tensor: Batch of 3D world coordinates of shape (S, H, W, 3) """ # Handle both (S, H, W, 1) and (S, H, W) cases if depth_map.dim() == 5: depth_map = depth_map.squeeze(-1) # (S, H, W) # Generate batched camera coordinates H, W = depth_map.shape[2:] batch_size, num_views = depth_map.shape[0], depth_map.shape[1] # Intrinsic parameters (S, 3, 3) intrinsics_cam, extrinsics_cam, depth_map = intrinsics_cam.flatten(0, 1), extrinsics_cam.flatten(0, 1), depth_map.flatten(0, 1) fu = intrinsics_cam[:, 0, 0] # (S,) fv = intrinsics_cam[:, 1, 1] # (S,) cu = intrinsics_cam[:, 0, 2] # (S,) cv = intrinsics_cam[:, 1, 2] # (S,) # Generate grid of pixel coordinates u = torch.arange(W, device=depth_map.device)[None, None, :].expand(batch_size * num_views, H, W) # (S, H, W) v = torch.arange(H, device=depth_map.device)[None, :, None].expand(batch_size * num_views, H, W) # (S, H, W) # Unproject to camera coordinates (S, H, W, 3) x_cam = (u - cu[:, None, None]) * depth_map / fu[:, None, None] y_cam = (v - cv[:, None, None]) * depth_map / fv[:, None, None] z_cam = depth_map cam_coords = torch.stack((x_cam, y_cam, z_cam), dim=-1) # (S, H, W, 3) # Transform to world coordinates cam_to_world = closed_form_inverse_se3(extrinsics_cam) # (S, 4, 4) # homo transformation homo_pts = torch.cat((cam_coords, torch.ones_like(cam_coords[..., :1])), dim=-1).flatten(1, 2) world_coords = torch.bmm(cam_to_world, homo_pts.transpose(1, 2)).transpose(1, 2)[:, :, :3].view(batch_size*num_views, H, W, 3) return world_coords.view(batch_size, num_views, H, W, 3) def unproject_depth_map_to_point_map( depth_map: torch.Tensor, extrinsics_cam: torch.Tensor, intrinsics_cam: torch.Tensor ) -> torch.Tensor: """ Unproject a batch of depth maps to 3D world coordinates. Args: depth_map (torch.Tensor): Batch of depth maps of shape (S, H, W, 1) or (S, H, W) extrinsics_cam (torch.Tensor): Batch of camera extrinsic matrices of shape (S, 3, 4) intrinsics_cam (torch.Tensor): Batch of camera intrinsic matrices of shape (S, 3, 3) Returns: torch.Tensor: Batch of 3D world coordinates of shape (S, H, W, 3) """ world_points_list = [] for frame_idx in range(depth_map.shape[0]): cur_world_points, _, _ = depth_to_world_coords_points( depth_map[frame_idx].squeeze(-1), extrinsics_cam[frame_idx], intrinsics_cam[frame_idx] ) world_points_list.append(cur_world_points) world_points_array = torch.stack(world_points_list, dim=0) return world_points_array def depth_to_world_coords_points( depth_map: torch.Tensor, extrinsic: torch.Tensor, intrinsic: torch.Tensor, eps=1e-8, ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Convert a depth map to world coordinates. Args: depth_map (torch.Tensor): Depth map of shape (H, W). intrinsic (torch.Tensor): Camera intrinsic matrix of shape (3, 3). extrinsic (torch.Tensor): Camera extrinsic matrix of shape (3, 4). OpenCV camera coordinate convention, cam from world. Returns: tuple[torch.Tensor, torch.Tensor]: World coordinates (H, W, 3) and valid depth mask (H, W). """ if depth_map is None: return None, None, None # Valid depth mask point_mask = depth_map > eps # Convert depth map to camera coordinates cam_coords_points = depth_to_cam_coords_points(depth_map, intrinsic) # Multiply with the inverse of extrinsic matrix to transform to world coordinates # extrinsic_inv is 4x4 (note closed_form_inverse_OpenCV is batched, the output is (N, 4, 4)) cam_to_world_extrinsic = closed_form_inverse_se3(extrinsic[None])[0] R_cam_to_world = cam_to_world_extrinsic[:3, :3] t_cam_to_world = cam_to_world_extrinsic[:3, 3] # Apply the rotation and translation to the camera coordinates world_coords_points = torch.matmul(cam_coords_points, R_cam_to_world.T) + t_cam_to_world # HxWx3, 3x3 -> HxWx3 return world_coords_points, cam_coords_points, point_mask def depth_to_cam_coords_points(depth_map: torch.Tensor, intrinsic: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]: """ Convert a depth map to camera coordinates. Args: depth_map (torch.Tensor): Depth map of shape (H, W). intrinsic (torch.Tensor): Camera intrinsic matrix of shape (3, 3). Returns: tuple[torch.Tensor, torch.Tensor]: Camera coordinates (H, W, 3) """ H, W = depth_map.shape assert intrinsic.shape == (3, 3), "Intrinsic matrix must be 3x3" assert intrinsic[0, 1] == 0 and intrinsic[1, 0] == 0, "Intrinsic matrix must have zero skew" # Intrinsic parameters fu, fv = intrinsic[0, 0], intrinsic[1, 1] cu, cv = intrinsic[0, 2], intrinsic[1, 2] # Generate grid of pixel coordinates u, v = torch.meshgrid(torch.arange(W, device=depth_map.device), torch.arange(H, device=depth_map.device), indexing='xy') # Unproject to camera coordinates x_cam = (u - cu) * depth_map / fu y_cam = (v - cv) * depth_map / fv z_cam = depth_map # Stack to form camera coordinates cam_coords = torch.stack((x_cam, y_cam, z_cam), dim=-1).to(dtype=torch.float32) return cam_coords def closed_form_inverse_se3(se3, R=None, T=None): """ Compute the inverse of each 4x4 (or 3x4) SE3 matrix in a batch. If `R` and `T` are provided, they must correspond to the rotation and translation components of `se3`. Otherwise, they will be extracted from `se3`. Args: se3: Nx4x4 or Nx3x4 array or tensor of SE3 matrices. R (optional): Nx3x3 array or tensor of rotation matrices. T (optional): Nx3x1 array or tensor of translation vectors. Returns: Inverted SE3 matrices with the same type and device as `se3`. Shapes: se3: (N, 4, 4) R: (N, 3, 3) T: (N, 3, 1) """ # Validate shapes if se3.shape[-2:] != (4, 4) and se3.shape[-2:] != (3, 4): raise ValueError(f"se3 must be of shape (N,4,4), got {se3.shape}.") # Extract R and T if not provided if R is None: R = se3[:, :3, :3] # (N,3,3) if T is None: T = se3[:, :3, 3:] # (N,3,1) # Transpose R R_transposed = R.transpose(1, 2) # (N,3,3) top_right = -torch.bmm(R_transposed, T) # (N,3,1) inverted_matrix = torch.eye(4, 4, device=R.device)[None].repeat(len(R), 1, 1) inverted_matrix = inverted_matrix.to(R.dtype) inverted_matrix[:, :3, :3] = R_transposed inverted_matrix[:, :3, 3:] = top_right return inverted_matrix