# # Copyright 2024 Yuehao Wang (https://github.com/yuehaowang). This part of code is borrowed form ["Bilateral Guided Radiance Field Processing"](https://bilarfpro.github.io/). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This is a standalone PyTorch implementation of 3D bilateral grid and CP-decomposed 4D bilateral grid. To use this module, you can download the "lib_bilagrid.py" file and simply put it in your project directory. For the details, please check our research project: ["Bilateral Guided Radiance Field Processing"](https://bilarfpro.github.io/). #### Dependencies In addition to PyTorch and Numpy, please install [tensorly](https://github.com/tensorly/tensorly). We have tested this module on Python 3.9.18, PyTorch 2.0.1 (CUDA 11), tensorly 0.8.1, and Numpy 1.25.2. #### Overview - For bilateral guided training, you need to construct a `BilateralGrid` instance, which can hold multiple bilateral grids for input views. Then, use `slice` function to obtain transformed RGB output and the corresponding affine transformations. - For bilateral guided finishing, you need to instantiate a `BilateralGridCP4D` object and use `slice4d`. #### Examples - Bilateral grid for approximating ISP: Open In Colab - Low-rank 4D bilateral grid for MR enhancement: Open In Colab Below is the API reference. """ import tensorly as tl import torch import torch.nn.functional as F from torch import nn tl.set_backend("pytorch") def color_correct( img: torch.Tensor, ref: torch.Tensor, num_iters: int = 5, eps: float = 0.5 / 255 ) -> torch.Tensor: """ Warp `img` to match the colors in `ref_img` using iterative color matching. This function performs color correction by warping the colors of the input image to match those of a reference image. It uses a least squares method to find a transformation that maps the input image's colors to the reference image's colors. The algorithm iteratively solves a system of linear equations, updating the set of unsaturated pixels in each iteration. This approach helps handle non-linear color transformations and reduces the impact of clipping. Args: img (torch.Tensor): Input image to be color corrected. Shape: [..., num_channels] ref (torch.Tensor): Reference image to match colors. Shape: [..., num_channels] num_iters (int, optional): Number of iterations for the color matching process. Default is 5. eps (float, optional): Small value to determine the range of unclipped pixels. Default is 0.5 / 255. Returns: torch.Tensor: Color corrected image with the same shape as the input image. Note: - Both input and reference images should be in the range [0, 1]. - The function works with any number of channels, but typically used with 3 (RGB). """ if img.shape[-1] != ref.shape[-1]: raise ValueError( f"img's {img.shape[-1]} and ref's {ref.shape[-1]} channels must match" ) num_channels = img.shape[-1] img_mat = img.reshape([-1, num_channels]) ref_mat = ref.reshape([-1, num_channels]) def is_unclipped(z): return (z >= eps) & (z <= 1 - eps) # z \in [eps, 1-eps]. mask0 = is_unclipped(img_mat) # Because the set of saturated pixels may change after solving for a # transformation, we repeatedly solve a system `num_iters` times and update # our estimate of which pixels are saturated. for _ in range(num_iters): # Construct the left hand side of a linear system that contains a quadratic # expansion of each pixel of `img`. a_mat = [] for c in range(num_channels): a_mat.append(img_mat[:, c : (c + 1)] * img_mat[:, c:]) # Quadratic term. a_mat.append(img_mat) # Linear term. a_mat.append(torch.ones_like(img_mat[:, :1])) # Bias term. a_mat = torch.cat(a_mat, dim=-1) warp = [] for c in range(num_channels): # Construct the right hand side of a linear system containing each color # of `ref`. b = ref_mat[:, c] # Ignore rows of the linear system that were saturated in the input or are # saturated in the current corrected color estimate. mask = mask0[:, c] & is_unclipped(img_mat[:, c]) & is_unclipped(b) ma_mat = torch.where(mask[:, None], a_mat, torch.zeros_like(a_mat)) mb = torch.where(mask, b, torch.zeros_like(b)) w = torch.linalg.lstsq(ma_mat, mb, rcond=-1)[0] assert torch.all(torch.isfinite(w)) warp.append(w) warp = torch.stack(warp, dim=-1) # Apply the warp to update img_mat. img_mat = torch.clip(torch.matmul(a_mat, warp), 0, 1) corrected_img = torch.reshape(img_mat, img.shape) return corrected_img def bilateral_grid_tv_loss(model, config): """Computes total variations of bilateral grids.""" total_loss = 0.0 for bil_grids in model.bil_grids: total_loss += config.bilgrid_tv_loss_mult * total_variation_loss( bil_grids.grids ) return total_loss def color_affine_transform(affine_mats, rgb): """Applies color affine transformations. Args: affine_mats (torch.Tensor): Affine transformation matrices. Supported shape: $(..., 3, 4)$. rgb (torch.Tensor): Input RGB values. Supported shape: $(..., 3)$. Returns: Output transformed colors of shape $(..., 3)$. """ return ( torch.matmul(affine_mats[..., :3], rgb.unsqueeze(-1)).squeeze(-1) + affine_mats[..., 3] ) def _num_tensor_elems(t): return max(torch.prod(torch.tensor(t.size()[1:]).float()).item(), 1.0) def total_variation_loss(x): # noqa: F811 """Returns total variation on multi-dimensional tensors. Args: x (torch.Tensor): The input tensor with shape $(B, C, ...)$, where $B$ is the batch size and $C$ is the channel size. """ batch_size = x.shape[0] tv = 0 for i in range(2, len(x.shape)): n_res = x.shape[i] idx1 = torch.arange(1, n_res, device=x.device) idx2 = torch.arange(0, n_res - 1, device=x.device) x1 = x.index_select(i, idx1) x2 = x.index_select(i, idx2) count = _num_tensor_elems(x1) tv += torch.pow((x1 - x2), 2).sum() / count return tv / batch_size def slice(bil_grids, xy, rgb, grid_idx): """Slices a batch of 3D bilateral grids by pixel coordinates `xy` and gray-scale guidances of pixel colors `rgb`. Supports 2-D, 3-D, and 4-D input shapes. The first dimension of the input is the batch size and the last dimension is 2 for `xy`, 3 for `rgb`, and 1 for `grid_idx`. The return value is a dictionary containing the affine transformations `affine_mats` sliced from bilateral grids and the output color `rgb_out` after applying the afffine transformations. In the 2-D input case, `xy` is a $(N, 2)$ tensor, `rgb` is a $(N, 3)$ tensor, and `grid_idx` is a $(N, 1)$ tensor. Then `affine_mats[i]` can be obtained via slicing the bilateral grid indexed at `grid_idx[i]` by `xy[i, :]` and `rgb2gray(rgb[i, :])`. For 3-D and 4-D input cases, the behavior of indexing bilateral grids and coordinates is the same with the 2-D case. .. note:: This function can be regarded as a wrapper of `color_affine_transform` and `BilateralGrid` with a slight performance improvement. When `grid_idx` contains a unique index, only a single bilateral grid will used during the slicing. In this case, this function will not perform tensor indexing to avoid data copy and extra memory (see [this](https://discuss.pytorch.org/t/does-indexing-a-tensor-return-a-copy-of-it/164905)). Args: bil_grids (`BilateralGrid`): An instance of $N$ bilateral grids. xy (torch.Tensor): The x-y coordinates of shape $(..., 2)$ in the range of $[0,1]$. rgb (torch.Tensor): The RGB values of shape $(..., 3)$ for computing the guidance coordinates, ranging in $[0,1]$. grid_idx (torch.Tensor): The indices of bilateral grids for each slicing. Shape: $(..., 1)$. Returns: A dictionary with keys and values as follows: ``` { "rgb": Transformed RGB colors. Shape: (..., 3), "rgb_affine_mats": The sliced affine transformation matrices from bilateral grids. Shape: (..., 3, 4) } ``` """ sh_ = rgb.shape grid_idx_unique = torch.unique(grid_idx) if len(grid_idx_unique) == 1: # All pixels are from a single view. grid_idx = grid_idx_unique # (1,) xy = xy.unsqueeze(0) # (1, ..., 2) rgb = rgb.unsqueeze(0) # (1, ..., 3) else: # Pixels are randomly sampled from different views. if len(grid_idx.shape) == 4: grid_idx = grid_idx[:, 0, 0, 0] # (chunk_size,) elif len(grid_idx.shape) == 3: grid_idx = grid_idx[:, 0, 0] # (chunk_size,) elif len(grid_idx.shape) == 2: grid_idx = grid_idx[:, 0] # (chunk_size,) else: raise ValueError( "The input to bilateral grid slicing is not supported yet." ) affine_mats = bil_grids(xy, rgb, grid_idx) rgb = color_affine_transform(affine_mats, rgb) return { "rgb": rgb.reshape(*sh_), "rgb_affine_mats": affine_mats.reshape( *sh_[:-1], affine_mats.shape[-2], affine_mats.shape[-1] ), } class BilateralGrid(nn.Module): """Class for 3D bilateral grids. Holds one or more than one bilateral grids. """ def __init__(self, num, grid_X=16, grid_Y=16, grid_W=8): """ Args: num (int): The number of bilateral grids (i.e., the number of views). grid_X (int): Defines grid width $W$. grid_Y (int): Defines grid height $H$. grid_W (int): Defines grid guidance dimension $L$. """ super(BilateralGrid, self).__init__() self.grid_width = grid_X """Grid width. Type: int.""" self.grid_height = grid_Y """Grid height. Type: int.""" self.grid_guidance = grid_W """Grid guidance dimension. Type: int.""" # Initialize grids. grid = self._init_identity_grid() self.grids = nn.Parameter(grid.tile(num, 1, 1, 1, 1)) # (N, 12, L, H, W) """ A 5-D tensor of shape $(N, 12, L, H, W)$.""" # Weights of BT601 RGB-to-gray. self.register_buffer("rgb2gray_weight", torch.Tensor([[0.299, 0.587, 0.114]])) self.rgb2gray = lambda rgb: (rgb @ self.rgb2gray_weight.T) * 2.0 - 1.0 """ A function that converts RGB to gray-scale guidance in $[-1, 1]$.""" def _init_identity_grid(self): grid = torch.tensor( [ 1.0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 1.0, 0, ] ).float() grid = grid.repeat( [self.grid_guidance * self.grid_height * self.grid_width, 1] ) # (L * H * W, 12) grid = grid.reshape( 1, self.grid_guidance, self.grid_height, self.grid_width, -1 ) # (1, L, H, W, 12) grid = grid.permute(0, 4, 1, 2, 3) # (1, 12, L, H, W) return grid def tv_loss(self): """Computes and returns total variation loss on the bilateral grids.""" return total_variation_loss(self.grids) def forward(self, grid_xy, rgb, idx=None): """Bilateral grid slicing. Supports 2-D, 3-D, 4-D, and 5-D input. For the 2-D, 3-D, and 4-D cases, please refer to `slice`. For the 5-D cases, `idx` will be unused and the first dimension of `xy` should be equal to the number of bilateral grids. Then this function becomes PyTorch's [`F.grid_sample`](https://pytorch.org/docs/stable/generated/torch.nn.functional.grid_sample.html). Args: grid_xy (torch.Tensor): The x-y coordinates in the range of $[0,1]$. rgb (torch.Tensor): The RGB values in the range of $[0,1]$. idx (torch.Tensor): The bilateral grid indices. Returns: Sliced affine matrices of shape $(..., 3, 4)$. """ grids = self.grids input_ndims = len(grid_xy.shape) assert len(rgb.shape) == input_ndims if input_ndims > 1 and input_ndims < 5: # Convert input into 5D for i in range(5 - input_ndims): grid_xy = grid_xy.unsqueeze(1) rgb = rgb.unsqueeze(1) assert idx is not None elif input_ndims != 5: raise ValueError( "Bilateral grid slicing only takes either 2D, 3D, 4D and 5D inputs" ) grids = self.grids if idx is not None: grids = grids[idx] assert grids.shape[0] == grid_xy.shape[0] # Generate slicing coordinates. grid_xy = (grid_xy - 0.5) * 2 # Rescale to [-1, 1]. grid_z = self.rgb2gray(rgb) # print(grid_xy.shape, grid_z.shape) # exit() grid_xyz = torch.cat([grid_xy, grid_z], dim=-1) # (N, m, h, w, 3) affine_mats = F.grid_sample( grids, grid_xyz, mode="bilinear", align_corners=True, padding_mode="border" ) # (N, 12, m, h, w) affine_mats = affine_mats.permute(0, 2, 3, 4, 1) # (N, m, h, w, 12) affine_mats = affine_mats.reshape( *affine_mats.shape[:-1], 3, 4 ) # (N, m, h, w, 3, 4) for _ in range(5 - input_ndims): affine_mats = affine_mats.squeeze(1) return affine_mats def slice4d(bil_grid4d, xyz, rgb): """Slices a 4D bilateral grid by point coordinates `xyz` and gray-scale guidances of radiance colors `rgb`. Args: bil_grid4d (`BilateralGridCP4D`): The input 4D bilateral grid. xyz (torch.Tensor): The xyz coordinates with shape $(..., 3)$. rgb (torch.Tensor): The RGB values with shape $(..., 3)$. Returns: A dictionary with keys and values as follows: ``` { "rgb": Transformed radiance RGB colors. Shape: (..., 3), "rgb_affine_mats": The sliced affine transformation matrices from the 4D bilateral grid. Shape: (..., 3, 4) } ``` """ affine_mats = bil_grid4d(xyz, rgb) rgb = color_affine_transform(affine_mats, rgb) return {"rgb": rgb, "rgb_affine_mats": affine_mats} class _ScaledTanh(nn.Module): def __init__(self, s=2.0): super().__init__() self.scaler = s def forward(self, x): return torch.tanh(self.scaler * x) class BilateralGridCP4D(nn.Module): """Class for low-rank 4D bilateral grids.""" def __init__( self, grid_X=16, grid_Y=16, grid_Z=16, grid_W=8, rank=5, learn_gray=True, gray_mlp_width=8, gray_mlp_depth=2, init_noise_scale=1e-6, bound=2.0, ): """ Args: grid_X (int): Defines grid width. grid_Y (int): Defines grid height. grid_Z (int): Defines grid depth. grid_W (int): Defines grid guidance dimension. rank (int): Rank of the 4D bilateral grid. learn_gray (bool): If True, an MLP will be learned to convert RGB colors to gray-scale guidances. gray_mlp_width (int): The MLP width for learnable guidance. gray_mlp_depth (int): The number of MLP layers for learnable guidance. init_noise_scale (float): The noise scale of the initialized factors. bound (float): The bound of the xyz coordinates. """ super(BilateralGridCP4D, self).__init__() self.grid_X = grid_X """Grid width. Type: int.""" self.grid_Y = grid_Y """Grid height. Type: int.""" self.grid_Z = grid_Z """Grid depth. Type: int.""" self.grid_W = grid_W """Grid guidance dimension. Type: int.""" self.rank = rank """Rank of the 4D bilateral grid. Type: int.""" self.learn_gray = learn_gray """Flags of learnable guidance is used. Type: bool.""" self.gray_mlp_width = gray_mlp_width """The MLP width for learnable guidance. Type: int.""" self.gray_mlp_depth = gray_mlp_depth """The MLP depth for learnable guidance. Type: int.""" self.init_noise_scale = init_noise_scale """The noise scale of the initialized factors. Type: float.""" self.bound = bound """The bound of the xyz coordinates. Type: float.""" self._init_cp_factors_parafac() self.rgb2gray = None """ A function that converts RGB to gray-scale guidances in $[-1, 1]$. If `learn_gray` is True, this will be an MLP network.""" if self.learn_gray: def rgb2gray_mlp_linear(layer): return nn.Linear( self.gray_mlp_width, self.gray_mlp_width if layer < self.gray_mlp_depth - 1 else 1, ) def rgb2gray_mlp_actfn(_): return nn.ReLU(inplace=True) self.rgb2gray = nn.Sequential( *( [nn.Linear(3, self.gray_mlp_width)] + [ nn_module(layer) for layer in range(1, self.gray_mlp_depth) for nn_module in [rgb2gray_mlp_actfn, rgb2gray_mlp_linear] ] + [_ScaledTanh(2.0)] ) ) else: # Weights of BT601/BT470 RGB-to-gray. self.register_buffer( "rgb2gray_weight", torch.Tensor([[0.299, 0.587, 0.114]]) ) self.rgb2gray = lambda rgb: (rgb @ self.rgb2gray_weight.T) * 2.0 - 1.0 def _init_identity_grid(self): grid = torch.tensor( [ 1.0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 1.0, 0, ] ).float() grid = grid.repeat([self.grid_W * self.grid_Z * self.grid_Y * self.grid_X, 1]) grid = grid.reshape(self.grid_W, self.grid_Z, self.grid_Y, self.grid_X, -1) grid = grid.permute(4, 0, 1, 2, 3) # (12, grid_W, grid_Z, grid_Y, grid_X) return grid def _init_cp_factors_parafac(self): # Initialize identity grids. init_grids = self._init_identity_grid() # Random noises are added to avoid singularity. init_grids = torch.randn_like(init_grids) * self.init_noise_scale + init_grids from tensorly.decomposition import parafac # Initialize grid CP factors _, facs = parafac(init_grids.clone().detach(), rank=self.rank) self.num_facs = len(facs) self.fac_0 = nn.Linear(facs[0].shape[0], facs[0].shape[1], bias=False) self.fac_0.weight = nn.Parameter(facs[0]) # (12, rank) for i in range(1, self.num_facs): fac = facs[i].T # (rank, grid_size) fac = fac.view(1, fac.shape[0], fac.shape[1], 1) # (1, rank, grid_size, 1) self.register_buffer(f"fac_{i}_init", fac) fac_resid = torch.zeros_like(fac) self.register_parameter(f"fac_{i}", nn.Parameter(fac_resid)) def tv_loss(self): """Computes and returns total variation loss on the factors of the low-rank 4D bilateral grids.""" total_loss = 0 for i in range(1, self.num_facs): fac = self.get_parameter(f"fac_{i}") total_loss += total_variation_loss(fac) return total_loss def forward(self, xyz, rgb): """Low-rank 4D bilateral grid slicing. Args: xyz (torch.Tensor): The xyz coordinates with shape $(..., 3)$. rgb (torch.Tensor): The corresponding RGB values with shape $(..., 3)$. Returns: Sliced affine matrices with shape $(..., 3, 4)$. """ sh_ = xyz.shape xyz = xyz.reshape(-1, 3) # flatten (N, 3) rgb = rgb.reshape(-1, 3) # flatten (N, 3) xyz = xyz / self.bound assert self.rgb2gray is not None gray = self.rgb2gray(rgb) xyzw = torch.cat([xyz, gray], dim=-1) # (N, 4) xyzw = xyzw.transpose(0, 1) # (4, N) coords = torch.stack([torch.zeros_like(xyzw), xyzw], dim=-1) # (4, N, 2) coords = coords.unsqueeze(1) # (4, 1, N, 2) coef = 1.0 for i in range(1, self.num_facs): fac = self.get_parameter(f"fac_{i}") + self.get_buffer(f"fac_{i}_init") coef = coef * F.grid_sample( fac, coords[[i - 1]], align_corners=True, padding_mode="border" ) # [1, rank, 1, N] coef = coef.squeeze([0, 2]).transpose(0, 1) # (N, rank) #type: ignore mat = self.fac_0(coef) return mat.reshape(*sh_[:-1], 3, 4)