import torch from torch import Tensor def get_normal_map(depth_map: torch.Tensor, intrinsic: torch.Tensor) -> torch.Tensor: """ Convert a depth map to camera coordinates. Args: depth_map (torch.Tensor): Depth map of shape (H, W). intrinsic (torch.Tensor): Camera intrinsic matrix of shape (3, 3). Returns: tuple[torch.Tensor, torch.Tensor]: Camera coordinates (H, W, 3) """ B, H, W = depth_map.shape assert intrinsic.shape == (B, 3, 3), "Intrinsic matrix must be Bx3x3" assert (intrinsic[:, 0, 1] == 0).all() and (intrinsic[:, 1, 0] == 0).all(), "Intrinsic matrix must have zero skew" # Intrinsic parameters fu = intrinsic[:, 0, 0] * W # (B,) fv = intrinsic[:, 1, 1] * H # (B,) cu = intrinsic[:, 0, 2] * W # (B,) cv = intrinsic[:, 1, 2] * H # (B,) # Generate grid of pixel coordinates u = torch.arange(W, device=depth_map.device)[None, None, :].expand(B, H, W) v = torch.arange(H, device=depth_map.device)[None, :, None].expand(B, H, W) # Unproject to camera coordinates (B, H, W) x_cam = (u - cu[:, None, None]) * depth_map / fu[:, None, None] y_cam = (v - cv[:, None, None]) * depth_map / fv[:, None, None] z_cam = depth_map # Stack to form camera coordinates (B, H, W, 3) cam_coords = torch.stack((x_cam, y_cam, z_cam), dim=-1).to(dtype=torch.float32) output = torch.zeros_like(cam_coords) # Calculate dx using batch dimension (B, H-2, W-2, 3) dx = cam_coords[:, 2:, 1:-1] - cam_coords[:, :-2, 1:-1] # Calculate dy using batch dimension (B, H-2, W-2, 3) dy = cam_coords[:, 1:-1, 2:] - cam_coords[:, 1:-1, :-2] # Cross product and normalization (B, H-2, W-2, 3) normal_map = torch.nn.functional.normalize(torch.cross(dx, dy, dim=-1), dim=-1) # Assign the computed normal map to the output tensor output[:, 1:-1, 1:-1, :] = normal_map return output