import torch import numpy as np from src.model.encoder.vggt.utils.rotation import mat_to_quat from src.model.encoder.vggt.utils.geometry import closed_form_inverse_se3, unproject_depth_map_to_point_map def convert_pt3d_RT_to_opencv(Rot, Trans): """ Convert Point3D extrinsic matrices to OpenCV convention. Args: Rot: 3D rotation matrix in Point3D format Trans: 3D translation vector in Point3D format Returns: extri_opencv: 3x4 extrinsic matrix in OpenCV format """ rot_pt3d = np.array(Rot) trans_pt3d = np.array(Trans) trans_pt3d[:2] *= -1 rot_pt3d[:, :2] *= -1 rot_pt3d = rot_pt3d.transpose(1, 0) extri_opencv = np.hstack((rot_pt3d, trans_pt3d[:, None])) return extri_opencv def build_pair_index(N, B=1): """ Build indices for all possible pairs of frames. Args: N: Number of frames B: Batch size Returns: i1, i2: Indices for all possible pairs """ i1_, i2_ = torch.combinations(torch.arange(N), 2, with_replacement=False).unbind(-1) i1, i2 = [(i[None] + torch.arange(B)[:, None] * N).reshape(-1) for i in [i1_, i2_]] return i1, i2 def rotation_angle(rot_gt, rot_pred, batch_size=None, eps=1e-15): """ Calculate rotation angle error between ground truth and predicted rotations. Args: rot_gt: Ground truth rotation matrices rot_pred: Predicted rotation matrices batch_size: Batch size for reshaping the result eps: Small value to avoid numerical issues Returns: Rotation angle error in degrees """ q_pred = mat_to_quat(rot_pred) q_gt = mat_to_quat(rot_gt) loss_q = (1 - (q_pred * q_gt).sum(dim=1) ** 2).clamp(min=eps) err_q = torch.arccos(1 - 2 * loss_q) rel_rangle_deg = err_q * 180 / np.pi if batch_size is not None: rel_rangle_deg = rel_rangle_deg.reshape(batch_size, -1) return rel_rangle_deg def translation_angle(tvec_gt, tvec_pred, batch_size=None, ambiguity=True): """ Calculate translation angle error between ground truth and predicted translations. Args: tvec_gt: Ground truth translation vectors tvec_pred: Predicted translation vectors batch_size: Batch size for reshaping the result ambiguity: Whether to handle direction ambiguity Returns: Translation angle error in degrees """ rel_tangle_deg = compare_translation_by_angle(tvec_gt, tvec_pred) rel_tangle_deg = rel_tangle_deg * 180.0 / np.pi if ambiguity: rel_tangle_deg = torch.min(rel_tangle_deg, (180 - rel_tangle_deg).abs()) if batch_size is not None: rel_tangle_deg = rel_tangle_deg.reshape(batch_size, -1) return rel_tangle_deg def compare_translation_by_angle(t_gt, t, eps=1e-15, default_err=1e6): """ Normalize the translation vectors and compute the angle between them. Args: t_gt: Ground truth translation vectors t: Predicted translation vectors eps: Small value to avoid division by zero default_err: Default error value for invalid cases Returns: Angular error between translation vectors in radians """ t_norm = torch.norm(t, dim=1, keepdim=True) t = t / (t_norm + eps) t_gt_norm = torch.norm(t_gt, dim=1, keepdim=True) t_gt = t_gt / (t_gt_norm + eps) loss_t = torch.clamp_min(1.0 - torch.sum(t * t_gt, dim=1) ** 2, eps) err_t = torch.acos(torch.sqrt(1 - loss_t)) err_t[torch.isnan(err_t) | torch.isinf(err_t)] = default_err return err_t def calculate_auc(r_error, t_error, max_threshold=30, return_list=False): """ Calculate the Area Under the Curve (AUC) for the given error arrays using PyTorch. Args: r_error: torch.Tensor representing R error values (Degree) t_error: torch.Tensor representing T error values (Degree) max_threshold: Maximum threshold value for binning the histogram return_list: Whether to return the normalized histogram as well Returns: AUC value, and optionally the normalized histogram """ error_matrix = torch.stack((r_error, t_error), dim=1) max_errors, _ = torch.max(error_matrix, dim=1) histogram = torch.histc( max_errors, bins=max_threshold + 1, min=0, max=max_threshold ) num_pairs = float(max_errors.size(0)) normalized_histogram = histogram / num_pairs if return_list: return ( torch.cumsum(normalized_histogram, dim=0).mean(), normalized_histogram, ) return torch.cumsum(normalized_histogram, dim=0).mean() def calculate_auc_np(r_error, t_error, max_threshold=30): """ Calculate the Area Under the Curve (AUC) for the given error arrays using NumPy. Args: r_error: numpy array representing R error values (Degree) t_error: numpy array representing T error values (Degree) max_threshold: Maximum threshold value for binning the histogram Returns: AUC value and the normalized histogram """ error_matrix = np.concatenate((r_error[:, None], t_error[:, None]), axis=1) max_errors = np.max(error_matrix, axis=1) bins = np.arange(max_threshold + 1) histogram, _ = np.histogram(max_errors, bins=bins) num_pairs = float(len(max_errors)) normalized_histogram = histogram.astype(float) / num_pairs return np.mean(np.cumsum(normalized_histogram)), normalized_histogram def se3_to_relative_pose_error(pred_se3, gt_se3, num_frames): """ Compute rotation and translation errors between predicted and ground truth poses. Args: pred_se3: Predicted SE(3) transformations gt_se3: Ground truth SE(3) transformations num_frames: Number of frames Returns: Rotation and translation angle errors in degrees """ pair_idx_i1, pair_idx_i2 = build_pair_index(num_frames) # Compute relative camera poses between pairs # We use closed_form_inverse to avoid potential numerical loss by torch.inverse() relative_pose_gt = closed_form_inverse_se3(gt_se3[pair_idx_i1]).bmm( gt_se3[pair_idx_i2] ) relative_pose_pred = closed_form_inverse_se3(pred_se3[pair_idx_i1]).bmm( pred_se3[pair_idx_i2] ) # Compute the difference in rotation and translation rel_rangle_deg = rotation_angle( relative_pose_gt[:, :3, :3], relative_pose_pred[:, :3, :3] ) rel_tangle_deg = translation_angle( relative_pose_gt[:, :3, 3], relative_pose_pred[:, :3, 3] ) return rel_rangle_deg, rel_tangle_deg def align_to_first_camera(camera_poses): """ Align all camera poses to the first camera's coordinate frame. Args: camera_poses: Tensor of shape (N, 4, 4) containing camera poses as SE3 transformations Returns: Tensor of shape (N, 4, 4) containing aligned camera poses """ first_cam_extrinsic_inv = closed_form_inverse_se3(camera_poses[0][None]) aligned_poses = torch.matmul(camera_poses, first_cam_extrinsic_inv) return aligned_poses