Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,872 Bytes
780320d 24ee135 780320d 24ee135 780320d 24ee135 780320d 24ee135 780320d 24ee135 780320d 24ee135 780320d 24ee135 780320d 24ee135 780320d 24ee135 780320d 24ee135 780320d 24ee135 780320d 24ee135 780320d 24ee135 780320d 24ee135 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import gradio as gr
import subprocess
import os
import shutil
from pathlib import Path
from PIL import Image
import spaces
# -----------------------------------------------------------------------------
# CONFIGURE THESE PATHS TO MATCH YOUR PROJECT STRUCTURE
# -----------------------------------------------------------------------------
INPUT_DIR = "samples"
OUTPUT_DIR = "inference_results/coz_vlmprompt"
# -----------------------------------------------------------------------------
# HELPER FUNCTION TO RUN INFERENCE AND RETURN THE OUTPUT IMAGE
# -----------------------------------------------------------------------------
@spaces.GPU()
def run_with_upload(uploaded_image_path, upscale_option):
"""
1) Clear INPUT_DIR
2) Save the uploaded file as input.png in INPUT_DIR
3) Read `upscale_option` (e.g. "1x", "2x", "4x") → turn it into "1", "2", or "4"
4) Call inference_coz.py with `--upscale <that_value>`
5) (Here we assume you still stitch together 1.png–4.png, or however you want.)
"""
# 1) Make sure INPUT_DIR exists; if it does, delete everything inside.
os.makedirs(INPUT_DIR, exist_ok=True)
for fn in os.listdir(INPUT_DIR):
full_path = os.path.join(INPUT_DIR, fn)
try:
if os.path.isfile(full_path) or os.path.islink(full_path):
os.remove(full_path)
elif os.path.isdir(full_path):
shutil.rmtree(full_path)
except Exception as e:
print(f"Warning: could not delete {full_path}: {e}")
# 2) Copy the uploaded image into INPUT_DIR.
# Gradio will give us a path like "/tmp/gradio_xyz.png"
if uploaded_image_path is None:
return None
try:
# Open with PIL (this handles JPEG, BMP, TIFF, etc.)
pil_img = Image.open(uploaded_image_path).convert("RGB")
except Exception as e:
print(f"Error: could not open uploaded image: {e}")
return None
# Save it as "input.png" in our INPUT_DIR
save_path = Path(INPUT_DIR) / "input.png"
try:
pil_img.save(save_path, format="PNG")
except Exception as e:
print(f"Error: could not save as PNG: {e}")
return None
# 3) Build and run your inference_coz.py command.
# This will block until it completes.
upscale_value = upscale_option.replace("x", "") # e.g. "2x" → "2"
cmd = [
"python", "inference_coz.py",
"-i", INPUT_DIR,
"-o", OUTPUT_DIR,
"--rec_type", "recursive_multiscale",
"--prompt_type", "vlm",
"--upscale", upscale_value,
"--lora_path", "ckpt/SR_LoRA/model_20001.pkl",
"--vae_path", "ckpt/SR_VAE/vae_encoder_20001.pt",
"--pretrained_model_name_or_path", "stabilityai/stable-diffusion-3-medium-diffusers",
"--ram_ft_path", "ckpt/DAPE/DAPE.pth",
"--ram_path", "ckpt/RAM/ram_swin_large_14m.pth"
]
try:
subprocess.run(cmd, check=True)
except subprocess.CalledProcessError as err:
# If inference_coz.py crashes, we can print/log the error.
print("Inference failed:", err)
return None
# -------------------------------------------------------------------------
# 4) After inference, look for the four numbered PNGs and stitch them
# -------------------------------------------------------------------------
per_sample_dir = os.path.join(OUTPUT_DIR, "per-sample", "input")
expected_files = [os.path.join(per_sample_dir, f"{i}.png") for i in range(1, 5)]
pil_images = []
for fp in expected_files:
if not os.path.isfile(fp):
print(f"Warning: expected file not found: {fp}")
return None
try:
img = Image.open(fp).convert("RGB")
pil_images.append(img)
except Exception as e:
print(f"Error opening {fp}: {e}")
return None
if len(pil_images) != 4:
print(f"Error: found {len(pil_images)} images, but need 4.")
return None
widths, heights = zip(*(im.size for im in pil_images))
w, h = widths[0], heights[0]
grid_w = w * 2
grid_h = h * 2
# composite = Image.new("RGB", (grid_w, grid_h))
# composite.paste(pil_images[0], (0, 0))
# composite.paste(pil_images[1], (w, 0))
# composite.paste(pil_images[2], (0, h))
# composite.paste(pil_images[3], (w, h))
return [pil_images[0], pil_images[1], pil_images[2], pil_images[3]]
# -------------------------------------------------------------
# BUILD THE GRADIO INTERFACE
# -----------------------------------------------------------------------------
css="""
#col-container {
margin: 0 auto;
max-width: 1024px;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML(
"""
<div style="text-align: center;">
<h1>Chain-of-Zoom</h1>
<p style="font-size:16px;">Extreme Super-Resolution via Scale Autoregression and Preference Alignment </p>
</div>
<br>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href="https://github.com/bryanswkim/Chain-of-Zoom">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
</div>
"""
)
with gr.Column(elem_id="col-container"):
with gr.Row():
with gr.Column():
# 1) Image upload component. We set type="filepath" so the callback
# (run_with_upload) will receive a local path to the uploaded file.
upload_image = gr.Image(
label="Upload your input image",
type="filepath"
)
# 2) Radio for choosing 1× / 2× / 4× upscaling
upscale_radio = gr.Radio(
choices=["1x", "2x", "4x"],
value="2x",
show_label=False
)
# 2) A button that the user will click to launch inference.
run_button = gr.Button("Chain-of-Zoom it")
# (3) Gallery to display multiple output images
output_gallery = gr.Gallery(
label="Inference Results",
show_label=True,
elem_id="gallery",
columns=[2], rows=[2]
)
# Wire the button: when clicked, call run_with_upload(upload_image), put
# its return value into output_image.
run_button.click(
fn=run_with_upload,
inputs=[upload_image, upscale_radio],
outputs=output_gallery
)
# -----------------------------------------------------------------------------
# START THE GRADIO SERVER
# -----------------------------------------------------------------------------
demo.launch(share=True) |