File size: 6,872 Bytes
780320d
 
 
 
 
 
 
 
24ee135
780320d
 
 
 
 
 
 
 
 
 
 
 
24ee135
780320d
24ee135
 
 
 
 
780320d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24ee135
 
780320d
 
 
 
 
 
24ee135
780320d
 
 
 
 
 
 
 
 
 
 
 
 
24ee135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
780320d
24ee135
 
780320d
 
24ee135
 
780320d
24ee135
 
 
780320d
24ee135
 
 
 
780320d
24ee135
 
 
780320d
 
 
 
 
 
24ee135
780320d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24ee135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
780320d
 
 
 
 
24ee135
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import gradio as gr
import subprocess
import os
import shutil
from pathlib import Path
from PIL import Image
import spaces


# -----------------------------------------------------------------------------
# CONFIGURE THESE PATHS TO MATCH YOUR PROJECT STRUCTURE
# -----------------------------------------------------------------------------

INPUT_DIR  = "samples"
OUTPUT_DIR = "inference_results/coz_vlmprompt"

# -----------------------------------------------------------------------------
# HELPER FUNCTION TO RUN INFERENCE AND RETURN THE OUTPUT IMAGE
# -----------------------------------------------------------------------------

@spaces.GPU()
def run_with_upload(uploaded_image_path, upscale_option):
    """
    1) Clear INPUT_DIR  
    2) Save the uploaded file as input.png in INPUT_DIR  
    3) Read `upscale_option` (e.g. "1x", "2x", "4x") → turn it into "1", "2", or "4"  
    4) Call inference_coz.py with `--upscale <that_value>`  
    5) (Here we assume you still stitch together 1.png–4.png, or however you want.)  
    """

    # 1) Make sure INPUT_DIR exists; if it does, delete everything inside.
    os.makedirs(INPUT_DIR, exist_ok=True)
    for fn in os.listdir(INPUT_DIR):
        full_path = os.path.join(INPUT_DIR, fn)
        try:
            if os.path.isfile(full_path) or os.path.islink(full_path):
                os.remove(full_path)
            elif os.path.isdir(full_path):
                shutil.rmtree(full_path)
        except Exception as e:
            print(f"Warning: could not delete {full_path}: {e}")

    # 2) Copy the uploaded image into INPUT_DIR.
    #    Gradio will give us a path like "/tmp/gradio_xyz.png"
    if uploaded_image_path is None:
        return None

    try:
        # Open with PIL (this handles JPEG, BMP, TIFF, etc.)
        pil_img = Image.open(uploaded_image_path).convert("RGB")
    except Exception as e:
        print(f"Error: could not open uploaded image: {e}")
        return None

    # Save it as "input.png" in our INPUT_DIR
    save_path = Path(INPUT_DIR) / "input.png"
    try:
        pil_img.save(save_path, format="PNG")
    except Exception as e:
        print(f"Error: could not save as PNG: {e}")
        return None

    # 3) Build and run your inference_coz.py command.
    #    This will block until it completes.
    upscale_value = upscale_option.replace("x", "")  # e.g. "2x" → "2"

    cmd = [
        "python", "inference_coz.py",
        "-i", INPUT_DIR,
        "-o", OUTPUT_DIR,
        "--rec_type", "recursive_multiscale",
        "--prompt_type", "vlm",
        "--upscale", upscale_value,
        "--lora_path", "ckpt/SR_LoRA/model_20001.pkl",
        "--vae_path", "ckpt/SR_VAE/vae_encoder_20001.pt",
        "--pretrained_model_name_or_path", "stabilityai/stable-diffusion-3-medium-diffusers",
        "--ram_ft_path", "ckpt/DAPE/DAPE.pth",
        "--ram_path", "ckpt/RAM/ram_swin_large_14m.pth"
    ]
    try:
        subprocess.run(cmd, check=True)
    except subprocess.CalledProcessError as err:
        # If inference_coz.py crashes, we can print/log the error.
        print("Inference failed:", err)
        return None

    # -------------------------------------------------------------------------
    # 4) After inference, look for the four numbered PNGs and stitch them
    # -------------------------------------------------------------------------
    per_sample_dir = os.path.join(OUTPUT_DIR, "per-sample", "input")
    expected_files = [os.path.join(per_sample_dir, f"{i}.png") for i in range(1, 5)]
    pil_images = []
    for fp in expected_files:
        if not os.path.isfile(fp):
            print(f"Warning: expected file not found: {fp}")
            return None
        try:
            img = Image.open(fp).convert("RGB")
            pil_images.append(img)
        except Exception as e:
            print(f"Error opening {fp}: {e}")
            return None

    if len(pil_images) != 4:
        print(f"Error: found {len(pil_images)} images, but need 4.")
        return None

    widths, heights = zip(*(im.size for im in pil_images))
    w, h = widths[0], heights[0]

    grid_w = w * 2
    grid_h = h * 2
    # composite = Image.new("RGB", (grid_w, grid_h))

    # composite.paste(pil_images[0], (0,    0))
    # composite.paste(pil_images[1], (w,    0))
    # composite.paste(pil_images[2], (0,    h))
    # composite.paste(pil_images[3], (w,    h))

    return [pil_images[0], pil_images[1], pil_images[2], pil_images[3]]
    
# -------------------------------------------------------------
# BUILD THE GRADIO INTERFACE
# -----------------------------------------------------------------------------

css="""
#col-container {
    margin: 0 auto;
    max-width: 1024px;
}
"""

with gr.Blocks(css=css) as demo:

    gr.HTML(
        """
            <div style="text-align: center;">
                <h1>Chain-of-Zoom</h1>
                <p style="font-size:16px;">Extreme Super-Resolution via Scale Autoregression and Preference Alignment </p>
            </div>
            <br>
            <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
                <a href="https://github.com/bryanswkim/Chain-of-Zoom">
                    <img src='https://img.shields.io/badge/GitHub-Repo-blue'>
                </a>
            </div>
            """
    )

    with gr.Column(elem_id="col-container"):
    
        with gr.Row():

          with gr.Column():
            # 1) Image upload component. We set type="filepath" so the callback
            #    (run_with_upload) will receive a local path to the uploaded file.
            upload_image = gr.Image(
                label="Upload your input image",
                type="filepath"
            )
            # 2) Radio for choosing 1× / 2× / 4× upscaling
            upscale_radio = gr.Radio(
                choices=["1x", "2x", "4x"],
                value="2x",            
                show_label=False
            )

            # 2) A button that the user will click to launch inference.
            run_button = gr.Button("Chain-of-Zoom it")
        
          # (3) Gallery to display multiple output images
          output_gallery = gr.Gallery(
              label="Inference Results",
              show_label=True,
              elem_id="gallery",
              columns=[2], rows=[2]
          )
          
          # Wire the button: when clicked, call run_with_upload(upload_image), put
          # its return value into output_image.
          run_button.click(
              fn=run_with_upload,
              inputs=[upload_image, upscale_radio],
              outputs=output_gallery
          )

# -----------------------------------------------------------------------------
# START THE GRADIO SERVER
# -----------------------------------------------------------------------------

demo.launch(share=True)