Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,443 Bytes
f108aa8 c5402af f108aa8 c5402af f108aa8 c5402af d8c8548 c5402af f108aa8 c5402af f108aa8 d8c8548 111b1e3 7ba8809 b354162 ea2f235 7ba8809 9e6063f 7ba8809 4f3b1e2 7ba8809 3d9fee9 7ba8809 2a9f7fd ba33fe9 111b1e3 a730161 ba33fe9 111b1e3 d8c8548 f108aa8 15066eb f108aa8 ba33fe9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import spaces
import gradio as gr
import os
import sys
from glob import glob
import time
from typing import Any, Union
import numpy as np
import torch
print(f'torch version:{torch.__version__}')
import trimesh
from huggingface_hub import snapshot_download
from PIL import Image
from accelerate.utils import set_seed
import subprocess
# import importlib, site, sys
# # Re-discover all .pth/.egg-link files
# for sitedir in site.getsitepackages():
# site.addsitedir(sitedir)
# # Clear caches so importlib will pick up new modules
# importlib.invalidate_caches()
# def sh(cmd): subprocess.check_call(cmd, shell=True)
def install_cuda_toolkit():
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.6.0/local_installers/cuda_12.6.0_560.28.03_linux.run"
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
subprocess.check_call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
subprocess.check_call(["chmod", "+x", CUDA_TOOLKIT_FILE])
subprocess.check_call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
os.environ["CUDA_HOME"],
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
)
# add for compiler header lookup
os.environ["CPATH"] = f"{os.environ['CUDA_HOME']}/include" + (
f":{os.environ['CPATH']}" if "CPATH" in os.environ else ""
)
# Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
os.environ["TORCH_CUDA_ARCH_LIST"] = "9.0"
print("==> finished installation")
print("installing cuda toolkit")
install_cuda_toolkit()
print("finished")
header_path = "/usr/local/cuda/include/cuda_runtime.h"
print(f"{header_path} exists:", os.path.exists(header_path))
# my_env = os.environ.copy()
subprocess.run(["pip", "install","diso"], check=True)
# # tell Python to re-scan site-packages now that the egg-link exists
# import importlib, site; site.addsitedir(site.getsitepackages()[0]); importlib.invalidate_caches()
from src.utils.data_utils import get_colored_mesh_composition, scene_to_parts, load_surfaces
from src.utils.render_utils import render_views_around_mesh, render_normal_views_around_mesh, make_grid_for_images_or_videos, export_renderings
from src.pipelines.pipeline_partcrafter import PartCrafterPipeline
from src.utils.image_utils import prepare_image
from src.models.briarmbg import BriaRMBG
# Constants
MAX_NUM_PARTS = 16
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DTYPE = torch.float16
# Download and initialize models
partcrafter_weights_dir = "pretrained_weights/PartCrafter"
rmbg_weights_dir = "pretrained_weights/RMBG-1.4"
snapshot_download(repo_id="wgsxm/PartCrafter", local_dir=partcrafter_weights_dir)
snapshot_download(repo_id="briaai/RMBG-1.4", local_dir=rmbg_weights_dir)
rmbg_net = BriaRMBG.from_pretrained(rmbg_weights_dir).to(DEVICE)
rmbg_net.eval()
pipe: PartCrafterPipeline = PartCrafterPipeline.from_pretrained(partcrafter_weights_dir).to(DEVICE, DTYPE)
@spaces.GPU()
@torch.no_grad()
def run_triposg(image: Image.Image,
num_parts: int,
seed: int,
num_tokens: int,
num_inference_steps: int,
guidance_scale: float,
max_num_expanded_coords: float,
use_flash_decoder: bool,
rmbg: bool):
"""
Generate 3D part meshes from an input image.
"""
if rmbg:
img_pil = prepare_image(image, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)
else:
img_pil = image
set_seed(seed)
start_time = time.time()
outputs = pipe(
image=[img_pil] * num_parts,
attention_kwargs={"num_parts": num_parts},
num_tokens=num_tokens,
generator=torch.Generator(device=pipe.device).manual_seed(seed),
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
max_num_expanded_coords=max_num_expanded_coords,
use_flash_decoder=use_flash_decoder,
).meshes
duration = time.time() - start_time
print(f"Generation time: {duration:.2f}s")
# Ensure no None outputs
for i, mesh in enumerate(outputs):
if mesh is None:
outputs[i] = trimesh.Trimesh(vertices=[[0,0,0]], faces=[[0,0,0]])
# Merge and color
merged = get_colored_mesh_composition(outputs)
# Export meshes and return results
timestamp = time.strftime("%Y%m%d_%H%M%S")
export_dir = os.path.join("results", timestamp)
os.makedirs(export_dir, exist_ok=True)
for idx, mesh in enumerate(outputs):
mesh.export(os.path.join(export_dir, f"part_{idx:02}.glb"))
merged.export(os.path.join(export_dir, "object.glb"))
return merged, export_dir
# Gradio Interface
def build_demo():
with gr.Blocks() as demo:
gr.Markdown("# PartCrafter 3D Generation Demo")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(type="pil", label="Input Image")
num_parts = gr.Slider(1, MAX_NUM_PARTS, value=4, step=1, label="Number of Parts")
seed = gr.Number(value=0, label="Random Seed", precision=0)
num_tokens = gr.Slider(256, 2048, value=1024, step=64, label="Num Tokens")
num_steps = gr.Slider(1, 100, value=50, step=1, label="Inference Steps")
guidance = gr.Slider(1.0, 20.0, value=7.0, step=0.1, label="Guidance Scale")
max_coords = gr.Text(value="1e9", label="Max Expanded Coords")
flash_decoder = gr.Checkbox(value=False, label="Use Flash Decoder")
remove_bg = gr.Checkbox(value=False, label="Remove Background (RMBG)")
run_button = gr.Button("Generate 3D Parts")
with gr.Column(scale=1):
output_model = gr.Model3D(label="Merged 3D Object")
output_dir = gr.Textbox(label="Export Directory")
run_button.click(fn=run_triposg,
inputs=[input_image, num_parts, seed, num_tokens, num_steps,
guidance, max_coords, flash_decoder, remove_bg],
outputs=[output_model, output_dir])
return demo
if __name__ == "__main__":
demo = build_demo()
demo.launch() |