File size: 24,168 Bytes
b3cdf05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
import os
import shutil
import time
import torch.backends.cudnn as cudnn
import torch.nn.parallel
import torch.optim
import torch.utils.data
# import torchnet as tnt
import torchvision.transforms as transforms
import torch.nn as nn
import math
import numpy as np
# from util import *

# tqdm.monitor_interval = 0
# class Engine(object):
#     def __init__(self, state={}):
#         self.state = state
#         if self._state('use_gpu') is None:
#             self.state['use_gpu'] = torch.cuda.is_available()

#         if self._state('image_size') is None:
#             self.state['image_size'] = 224

#         if self._state('batch_size') is None:
#             self.state['batch_size'] = 64

#         if self._state('workers') is None:
#             self.state['workers'] = 25

#         if self._state('device_ids') is None:
#             self.state['device_ids'] = None

#         if self._state('evaluate') is None:
#             self.state['evaluate'] = False

#         if self._state('start_epoch') is None:
#             self.state['start_epoch'] = 0

#         if self._state('max_epochs') is None:
#             self.state['max_epochs'] = 90

#         if self._state('epoch_step') is None:
#             self.state['epoch_step'] = []

#         # meters
#         self.state['meter_loss'] = tnt.meter.AverageValueMeter()
#         # time measure
#         self.state['batch_time'] = tnt.meter.AverageValueMeter()
#         self.state['data_time'] = tnt.meter.AverageValueMeter()
#         # display parameters
#         if self._state('use_pb') is None:
#             self.state['use_pb'] = False
#         if self._state('print_freq') is None:
#             self.state['print_freq'] = 10
#         if not self.state['evaluate']:
#             self.state['log_path'] = open(self.state['save_model_path']+'train.log', 'a')
#         else:
#             self.state['log_path'] = open(self.state['save_model_path']+'eval.log', 'a')

#     def _state(self, name):
#         if name in self.state:
#             return self.state[name]

#     def init_learning(self, model, criterion):

#         if self._state('train_transform') is None:
#             normalize = transforms.Normalize(mean=model.image_normalization_mean,
#                                              std=model.image_normalization_std)
#             #flip = transforms.RandomChoice([transforms.RandomHorizontalFlip(),\
#                                                         #transforms.RandomVerticalFlip()])
#             self.state['train_transform'] = transforms.Compose([
#                 transforms.Resize((512, 512)),
#                 MultiScaleCrop(self.state['image_size'], scales=(1.0, 0.875, 0.75, 0.66, 0.5), max_distort=2),
#                 transforms.RandomHorizontalFlip(),
#                 transforms.ToTensor(),
#                 normalize,
#                 transforms.RandomErasing(p=0.7),
#             ])
#             print(self.state['train_transform'])

#         if self._state('val_transform') is None:
#             normalize = transforms.Normalize(mean=model.image_normalization_mean,
#                                              std=model.image_normalization_std)
#             self.state['val_transform'] = transforms.Compose([
#                 Warp(self.state['image_size']),
#                 transforms.ToTensor(),
#                 normalize,
#             ])

#         self.state['best_score'] = 0

#     def learning(self, model, criterion, train_dataset, val_dataset, optimizer=None):

#         self.init_learning(model, criterion)

#         # define train and val transform
#         train_dataset.transform = self.state['train_transform']
#         train_dataset.target_transform = self._state('train_target_transform')
#         val_dataset.transform = self.state['val_transform']
#         val_dataset.target_transform = self._state('val_target_transform')

#         # data loading code
#         train_loader = torch.utils.data.DataLoader(train_dataset,
#                                                    batch_size=self.state['batch_size'], shuffle=True,
#                                                    num_workers=self.state['workers'],drop_last=True)

#         val_loader = torch.utils.data.DataLoader(val_dataset,
#                                                  batch_size=self.state['batch_size'], shuffle=False,
#                                                  num_workers=self.state['workers'])

#         # optionally resume from a checkpoint
#         if self._state('resume') is not None:
#             if os.path.isfile(self.state['resume']):
#                 print("=> loading checkpoint '{}'".format(self.state['resume']))
#                 checkpoint = torch.load(self.state['resume'])
#                 self.state['start_epoch'] = checkpoint['epoch']
#                 self.state['best_score'] = checkpoint['best_score']
#                 model.load_state_dict(checkpoint['state_dict'])
#                 print("=> loaded checkpoint '{}' (epoch {})"
#                       .format(self.state['evaluate'], checkpoint['epoch']))
#             else:
#                 print("=> no checkpoint found at '{}'".format(self.state['resume']))


#         if self.state['use_gpu']:
#             train_loader.pin_memory = True
#             val_loader.pin_memory = True
#             cudnn.benchmark = True


#             model = torch.nn.DataParallel(model, device_ids=self.state['device_ids']).cuda()

#             criterion = criterion.cuda()

#         if self.state['evaluate']:
#             with torch.no_grad():
#                 self.validate(val_loader, model, criterion)
#             return

#         # TODO define optimizer

#         for epoch in range(self.state['start_epoch'], self.state['max_epochs']):
#             self.state['epoch'] = epoch
#             lr = self.adjust_learning_rate(optimizer)
#             print('lr:{:.5f}'.format(lr))

#             # train for one epoch
#             self.train(train_loader, model, criterion, optimizer, epoch)
#             # evaluate on validation set
#             with torch.no_grad():
#                 prec1 = self.validate(val_loader, model, criterion)

#             # remember best prec@1 and save checkpoint
#             is_best = prec1 > self.state['best_score']
#             self.state['best_score'] = max(prec1, self.state['best_score'])
#             self.save_checkpoint({
#                 'epoch': epoch + 1,
#                 'arch': self._state('arch'),
#                 'state_dict': model.module.state_dict() if self.state['use_gpu'] else model.state_dict(),
#                 'best_score': self.state['best_score'],
#             }, is_best)

#             print(' *** best={best:.3f}'.format(best=self.state['best_score']))
#         self.state['log_path'].close()
#         return self.state['best_score']

#     def train(self, data_loader, model, criterion, optimizer, epoch):

#         # switch to train mode
#         model.train()

#         self.on_start_epoch(True, model, criterion, data_loader, optimizer)

#         if self.state['use_pb']:
#             data_loader = tqdm(data_loader, desc='Training')

#         end = time.time()
#         for i, (input, target) in enumerate(data_loader):
#             # measure data loading time
#             self.state['iteration'] = i
#             self.state['data_time_batch'] = time.time() - end
#             self.state['data_time'].add(self.state['data_time_batch'])

#             self.state['input'] = input
#             self.state['target'] = target

#             self.on_start_batch(True, model, criterion, data_loader, optimizer)

#             if self.state['use_gpu']:
#                 self.state['target'] = self.state['target'].cuda()
#             self.on_forward(True, model, criterion, data_loader, optimizer)

#             # measure elapsed time
#             self.state['batch_time_current'] = time.time() - end
#             self.state['batch_time'].add(self.state['batch_time_current'])
#             end = time.time()
#             # measure accuracy
#             self.on_end_batch(True, model, criterion, data_loader, optimizer)

#         self.on_end_epoch(True, model, criterion, data_loader, optimizer)

#     def validate(self, data_loader, model, criterion):

#         # switch to evaluate mode
#         model.eval()

#         self.on_start_epoch(False, model, criterion, data_loader)

#         if self.state['use_pb']:
#             data_loader = tqdm(data_loader, desc='Test')

#         end = time.time()
#         for i, (input, target) in enumerate(data_loader):
#             # measure data loading time
#             self.state['iteration'] = i
#             self.state['data_time_batch'] = time.time() - end
#             self.state['data_time'].add(self.state['data_time_batch'])

#             self.state['input'] = input
#             self.state['target'] = target

#             self.on_start_batch(False, model, criterion, data_loader)

#             if self.state['use_gpu']:
#                 self.state['target'] = self.state['target'].cuda()

#             self.on_forward(False, model, criterion, data_loader)

#             # measure elapsed time
#             self.state['batch_time_current'] = time.time() - end
#             self.state['batch_time'].add(self.state['batch_time_current'])
#             end = time.time()
#             # measure accuracy
#             self.on_end_batch(False, model, criterion, data_loader)

#         score = self.on_end_epoch(False, model, criterion, data_loader)

#         return score

#     def save_checkpoint(self, state, is_best, filename='checkpoint.pth.tar'):
#         if self._state('save_model_path') is not None:
#             filename_ = filename
#             filename = os.path.join(self.state['save_model_path'], filename_)
#             if not os.path.exists(self.state['save_model_path']):
#                 os.makedirs(self.state['save_model_path'])
#         print('save model {filename}'.format(filename=filename))
#         torch.save(state, filename)
#         if is_best:
#             filename_best = 'model_best.pth.tar'
#             if self._state('save_model_path') is not None:
#                 filename_best = os.path.join(self.state['save_model_path'], filename_best)
#             shutil.copyfile(filename, filename_best)
#             if self._state('save_model_path') is not None:
#                 if self._state('filename_previous_best') is not None:
#                     os.remove(self._state('filename_previous_best'))
#                 filename_best = os.path.join(self.state['save_model_path'], 'model_best_{score:.4f}.pth.tar'.format(score=state['best_score']))
#                 shutil.copyfile(filename, filename_best)
#                 self.state['filename_previous_best'] = filename_best

#     def adjust_learning_rate(self, optimizer):
#         """Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
#         # lr = args.lr * (0.1 ** (epoch // 30))
#         decay = 0.1 ** (sum(self.state['epoch'] >= np.array(self.state['epoch_step'])))
#         lr = self.state['lr'] * decay
#         for param_group in optimizer.param_groups:
#             param_group['lr'] = lr
#         return lr


# class MultiLabelEngine(Engine):
#     def __init__(self, state):
#         Engine.__init__(self, state)
#         if self._state('difficult_examples') is None:
#             self.state['difficult_examples'] = False
#         self.state['ap_meter'] = AveragePrecisionMeter(self.state['difficult_examples'])

#     def on_start_epoch(self, training, model, criterion, data_loader, optimizer=None, display=True):
#         self.state['meter_loss'].reset()
#         self.state['batch_time'].reset()
#         self.state['data_time'].reset()
#         self.state['ap_meter'].reset()

#     def on_end_epoch(self, training, model, criterion, data_loader, optimizer=None, display=True):
#         map = 100 * self.state['ap_meter'].value().mean()
#         loss = self.state['meter_loss'].value()[0]
#         OP, OR, OF1, CP, CR, CF1 = self.state['ap_meter'].overall()
#         OP_k, OR_k, OF1_k, CP_k, CR_k, CF1_k = self.state['ap_meter'].overall_topk(3)
#         if display:
#             if training:
#                 print('Epoch: [{0}]\t'
#                       'Loss {loss:.4f}\t'
#                       'mAP {map:.3f}'.format(self.state['epoch'], loss=loss, map=map))
#                 print('OP: {OP:.4f}\t'
#                       'OR: {OR:.4f}\t'
#                       'OF1: {OF1:.4f}\t'
#                       'CP: {CP:.4f}\t'
#                       'CR: {CR:.4f}\t'
#                       'CF1: {CF1:.4f}'.format(OP=OP, OR=OR, OF1=OF1, CP=CP, CR=CR, CF1=CF1))
#                 self.state['log_path'].write('Epoch: [{0}]\t'
#                       'Loss {loss:.4f}\t'
#                       'mAP {map:.3f}'.format(self.state['epoch'], loss=loss, map=map)+'\n')
#                 self.state['log_path'].write('OP: {OP:.4f}\t'
#                       'OR: {OR:.4f}\t'
#                       'OF1: {OF1:.4f}\t'
#                       'CP: {CP:.4f}\t'
#                       'CR: {CR:.4f}\t'
#                       'CF1: {CF1:.4f}'.format(OP=OP, OR=OR, OF1=OF1, CP=CP, CR=CR, CF1=CF1)+'\n')
#             else:
#                 print('Test: \t Loss {loss:.4f}\t mAP {map:.3f}'.format(loss=loss, map=map))
#                 print('OP: {OP:.4f}\t'
#                       'OR: {OR:.4f}\t'
#                       'OF1: {OF1:.4f}\t'
#                       'CP: {CP:.4f}\t'
#                       'CR: {CR:.4f}\t'
#                       'CF1: {CF1:.4f}'.format(OP=OP, OR=OR, OF1=OF1, CP=CP, CR=CR, CF1=CF1))
#                 print('OP_3: {OP:.4f}\t'
#                       'OR_3: {OR:.4f}\t'
#                       'OF1_3: {OF1:.4f}\t'
#                       'CP_3: {CP:.4f}\t'
#                       'CR_3: {CR:.4f}\t'
#                       'CF1_3: {CF1:.4f}'.format(OP=OP_k, OR=OR_k, OF1=OF1_k, CP=CP_k, CR=CR_k, CF1=CF1_k))
#                 self.state['log_path'].write('Test: \t Loss {loss:.4f}\t mAP {map:.3f}'.format(loss=loss, map=map)+'\n')
#                 self.state['log_path'].write('OP: {OP:.4f}\t'
#                       'OR: {OR:.4f}\t'
#                       'OF1: {OF1:.4f}\t'
#                       'CP: {CP:.4f}\t'
#                       'CR: {CR:.4f}\t'
#                       'CF1: {CF1:.4f}'.format(OP=OP, OR=OR, OF1=OF1, CP=CP, CR=CR, CF1=CF1)+'\n')
#                 self.state['log_path'].write('OP_3: {OP:.4f}\t'
#                       'OR_3: {OR:.4f}\t'
#                       'OF1_3: {OF1:.4f}\t'
#                       'CP_3: {CP:.4f}\t'
#                       'CR_3: {CR:.4f}\t'
#                       'CF1_3: {CF1:.4f}'.format(OP=OP_k, OR=OR_k, OF1=OF1_k, CP=CP_k, CR=CR_k, CF1=CF1_k)+'\n')
        

#         return map

#     def on_start_batch(self, training, model, criterion, data_loader, optimizer=None, display=True):

#         self.state['target_gt'] = self.state['target'].clone()
#         self.state['target'][self.state['target'] == 0] = 1
#         self.state['target'][self.state['target'] == -1] = 0

#         input = self.state['input']
#         self.state['feature'] = input[0]
#         self.state['out'] = input[1]

#     def on_end_batch(self, training, model, criterion, data_loader, optimizer=None, display=True):

#         self.state['loss_batch'] = self.state['loss'].item()
#         self.state['meter_loss'].add(self.state['loss_batch'])
#         # measure mAP
#         self.state['ap_meter'].add(self.state['output'].data, self.state['target_gt'])

#         if display and self.state['print_freq'] != 0 and self.state['iteration'] % self.state['print_freq'] == 0:
#             loss = self.state['meter_loss'].value()[0]
#             batch_time = self.state['batch_time'].value()[0]
#             data_time = self.state['data_time'].value()[0]
#             if training:
#                 print('Epoch: [{0}][{1}/{2}]\t'
#                       'Time {batch_time_current:.3f} ({batch_time:.3f})\t'
#                       'Data {data_time_current:.3f} ({data_time:.3f})\t'
#                       'Loss {loss_current:.4f} ({loss:.4f})'.format(
#                     self.state['epoch'], self.state['iteration'], len(data_loader),
#                     batch_time_current=self.state['batch_time_current'],
#                     batch_time=batch_time, data_time_current=self.state['data_time_batch'],
#                     data_time=data_time, loss_current=self.state['loss_batch'], loss=loss))
#             else:
#                 print('Test: [{0}/{1}]\t'
#                       'Time {batch_time_current:.3f} ({batch_time:.3f})\t'
#                       'Data {data_time_current:.3f} ({data_time:.3f})\t'
#                       'Loss {loss_current:.4f} ({loss:.4f})'.format(
#                     self.state['iteration'], len(data_loader), batch_time_current=self.state['batch_time_current'],
#                     batch_time=batch_time, data_time_current=self.state['data_time_batch'],
#                     data_time=data_time, loss_current=self.state['loss_batch'], loss=loss))

#     def on_forward(self, training, model, criterion, data_loader, optimizer=None, display=True):
#         feature_var = self.state['feature']
#         target_var = self.state['target']
#         #print(type(feature_var),feature_var.size())
#         # compute output
#         self.state['output'] = model(feature_var)
#         self.state['loss'] = criterion(self.state['output'], target_var) 

#         if training:
#             optimizer.zero_grad()
#             self.state['loss'].backward()
#             nn.utils.clip_grad_norm(model.parameters(), max_norm=10.0)
#             optimizer.step()

    



class AveragePrecisionMeter(object):
    """
    The APMeter measures the average precision per class.
    The APMeter is designed to operate on `NxK` Tensors `output` and
    `target`, and optionally a `Nx1` Tensor weight where (1) the `output`
    contains model output scores for `N` examples and `K` classes that ought to
    be higher when the model is more convinced that the example should be
    positively labeled, and smaller when the model believes the example should
    be negatively labeled (for instance, the output of a sigmoid function); (2)
    the `target` contains only values 0 (for negative examples) and 1
    (for positive examples); and (3) the `weight` ( > 0) represents weight for
    each sample.
    """

    def __init__(self, difficult_examples=False):
        super(AveragePrecisionMeter, self).__init__()
        self.reset()
        self.difficult_examples = difficult_examples

    def reset(self):
        """Resets the meter with empty member variables"""
        self.scores = torch.FloatTensor(torch.FloatStorage())
        self.targets = torch.LongTensor(torch.LongStorage())

    def add(self, output, target):
        """
        Args:
            output (Tensor): NxK tensor that for each of the N examples
                indicates the probability of the example belonging to each of
                the K classes, according to the model. The probabilities should
                sum to one over all classes
            target (Tensor): binary NxK tensort that encodes which of the K
                classes are associated with the N-th input
                    (eg: a row [0, 1, 0, 1] indicates that the example is
                         associated with classes 2 and 4)
            weight (optional, Tensor): Nx1 tensor representing the weight for
                each example (each weight > 0)
        """
        if not torch.is_tensor(output):
            output = torch.from_numpy(output)
        if not torch.is_tensor(target):
            target = torch.from_numpy(target)

        if output.dim() == 1:
            output = output.view(-1, 1)
        else:
            assert output.dim() == 2, \
                'wrong output size (should be 1D or 2D with one column \
                per class)'
        if target.dim() == 1:
            target = target.view(-1, 1)
        else:
            assert target.dim() == 2, \
                'wrong target size (should be 1D or 2D with one column \
                per class)'
        if self.scores.numel() > 0:
            assert target.size(1) == self.targets.size(1), \
                'dimensions for output should match previously added examples.'

        # make sure storage is of sufficient size
        if self.scores.storage().size() < self.scores.numel() + output.numel():
            new_size = math.ceil(self.scores.storage().size() * 1.5)
            self.scores.storage().resize_(int(new_size + output.numel()))
            self.targets.storage().resize_(int(new_size + output.numel()))

        # store scores and targets
        offset = self.scores.size(0) if self.scores.dim() > 0 else 0
        self.scores.resize_(offset + output.size(0), output.size(1))
        self.targets.resize_(offset + target.size(0), target.size(1))
        self.scores.narrow(0, offset, output.size(0)).copy_(output)
        self.targets.narrow(0, offset, target.size(0)).copy_(target)

    def value(self):
        """Returns the model's average precision for each class
        Return:
            ap (FloatTensor): 1xK tensor, with avg precision for each class k
        """

        if self.scores.numel() == 0:
            return 0
        ap = torch.zeros(self.scores.size(1))
        rg = torch.arange(1, self.scores.size(0)).float()
        # self.save_to_mat()
        # self.save_to_np()
        # compute average precision for each class
        for k in range(self.scores.size(1)):
            # sort scores
            scores = self.scores[:, k]
            targets = self.targets[:, k]
            # compute average precision
            ap[k] = AveragePrecisionMeter.average_precision(scores, targets, self.difficult_examples)
        return ap

    @staticmethod
    def average_precision(output, target, difficult_examples=True):
        if target.sum() == 0:
            return 0
        else:
            # sort examples
            sorted, indices = torch.sort(output, dim=0, descending=True)

            # Computes prec@i
            pos_count = 0.
            total_count = 0.
            precision_at_i = 0.
            for i in indices:
                label = target[i]
                if difficult_examples and label == 0:
                    continue
                if label == 1:
                    pos_count += 1
                total_count += 1
                if label == 1:
                    precision_at_i += pos_count / total_count
            precision_at_i /= pos_count
            return precision_at_i

    def overall(self):
        if self.scores.numel() == 0:
            return 0
        scores = self.scores.cpu().numpy()
        targets = self.targets.cpu().numpy()
        targets[targets == -1] = 0
        return self.evaluation(scores, targets)

    def overall_topk(self, k):
        targets = self.targets.cpu().numpy()
        targets[targets == -1] = 0
        n, c = self.scores.size()
        scores = np.zeros((n, c)) - 1
        index = self.scores.topk(k, 1, True, True)[1].cpu().numpy()
        tmp = self.scores.cpu().numpy()
        for i in range(n):
            for ind in index[i]:
                scores[i, ind] = 1 if tmp[i, ind] >= 0 else -1
        return self.evaluation(scores, targets)


    def evaluation(self, scores_, targets_):
        n, n_class = scores_.shape
        Nc, Np, Ng = np.zeros(n_class), np.zeros(n_class), np.zeros(n_class)
        for k in range(n_class):
            scores = scores_[:, k]
            targets = targets_[:, k]
            targets[targets == -1] = 0
            Ng[k] = np.sum(targets == 1)
            Np[k] = np.sum(scores >= 0)
            Nc[k] = np.sum(targets * (scores >= 0))
        Np[Np == 0] = 1
        OP = np.sum(Nc) / np.sum(Np)
        OR = np.sum(Nc) / np.sum(Ng)
        OF1 = (2 * OP * OR) / (OP + OR)

        CP = np.sum(Nc / Np) / n_class
        CR = np.sum(Nc / Ng) / n_class
        CF1 = (2 * CP * CR) / (CP + CR)
        return OP, OR, OF1, CP, CR, CF1