Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,168 Bytes
b3cdf05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 |
import os
import shutil
import time
import torch.backends.cudnn as cudnn
import torch.nn.parallel
import torch.optim
import torch.utils.data
# import torchnet as tnt
import torchvision.transforms as transforms
import torch.nn as nn
import math
import numpy as np
# from util import *
# tqdm.monitor_interval = 0
# class Engine(object):
# def __init__(self, state={}):
# self.state = state
# if self._state('use_gpu') is None:
# self.state['use_gpu'] = torch.cuda.is_available()
# if self._state('image_size') is None:
# self.state['image_size'] = 224
# if self._state('batch_size') is None:
# self.state['batch_size'] = 64
# if self._state('workers') is None:
# self.state['workers'] = 25
# if self._state('device_ids') is None:
# self.state['device_ids'] = None
# if self._state('evaluate') is None:
# self.state['evaluate'] = False
# if self._state('start_epoch') is None:
# self.state['start_epoch'] = 0
# if self._state('max_epochs') is None:
# self.state['max_epochs'] = 90
# if self._state('epoch_step') is None:
# self.state['epoch_step'] = []
# # meters
# self.state['meter_loss'] = tnt.meter.AverageValueMeter()
# # time measure
# self.state['batch_time'] = tnt.meter.AverageValueMeter()
# self.state['data_time'] = tnt.meter.AverageValueMeter()
# # display parameters
# if self._state('use_pb') is None:
# self.state['use_pb'] = False
# if self._state('print_freq') is None:
# self.state['print_freq'] = 10
# if not self.state['evaluate']:
# self.state['log_path'] = open(self.state['save_model_path']+'train.log', 'a')
# else:
# self.state['log_path'] = open(self.state['save_model_path']+'eval.log', 'a')
# def _state(self, name):
# if name in self.state:
# return self.state[name]
# def init_learning(self, model, criterion):
# if self._state('train_transform') is None:
# normalize = transforms.Normalize(mean=model.image_normalization_mean,
# std=model.image_normalization_std)
# #flip = transforms.RandomChoice([transforms.RandomHorizontalFlip(),\
# #transforms.RandomVerticalFlip()])
# self.state['train_transform'] = transforms.Compose([
# transforms.Resize((512, 512)),
# MultiScaleCrop(self.state['image_size'], scales=(1.0, 0.875, 0.75, 0.66, 0.5), max_distort=2),
# transforms.RandomHorizontalFlip(),
# transforms.ToTensor(),
# normalize,
# transforms.RandomErasing(p=0.7),
# ])
# print(self.state['train_transform'])
# if self._state('val_transform') is None:
# normalize = transforms.Normalize(mean=model.image_normalization_mean,
# std=model.image_normalization_std)
# self.state['val_transform'] = transforms.Compose([
# Warp(self.state['image_size']),
# transforms.ToTensor(),
# normalize,
# ])
# self.state['best_score'] = 0
# def learning(self, model, criterion, train_dataset, val_dataset, optimizer=None):
# self.init_learning(model, criterion)
# # define train and val transform
# train_dataset.transform = self.state['train_transform']
# train_dataset.target_transform = self._state('train_target_transform')
# val_dataset.transform = self.state['val_transform']
# val_dataset.target_transform = self._state('val_target_transform')
# # data loading code
# train_loader = torch.utils.data.DataLoader(train_dataset,
# batch_size=self.state['batch_size'], shuffle=True,
# num_workers=self.state['workers'],drop_last=True)
# val_loader = torch.utils.data.DataLoader(val_dataset,
# batch_size=self.state['batch_size'], shuffle=False,
# num_workers=self.state['workers'])
# # optionally resume from a checkpoint
# if self._state('resume') is not None:
# if os.path.isfile(self.state['resume']):
# print("=> loading checkpoint '{}'".format(self.state['resume']))
# checkpoint = torch.load(self.state['resume'])
# self.state['start_epoch'] = checkpoint['epoch']
# self.state['best_score'] = checkpoint['best_score']
# model.load_state_dict(checkpoint['state_dict'])
# print("=> loaded checkpoint '{}' (epoch {})"
# .format(self.state['evaluate'], checkpoint['epoch']))
# else:
# print("=> no checkpoint found at '{}'".format(self.state['resume']))
# if self.state['use_gpu']:
# train_loader.pin_memory = True
# val_loader.pin_memory = True
# cudnn.benchmark = True
# model = torch.nn.DataParallel(model, device_ids=self.state['device_ids']).cuda()
# criterion = criterion.cuda()
# if self.state['evaluate']:
# with torch.no_grad():
# self.validate(val_loader, model, criterion)
# return
# # TODO define optimizer
# for epoch in range(self.state['start_epoch'], self.state['max_epochs']):
# self.state['epoch'] = epoch
# lr = self.adjust_learning_rate(optimizer)
# print('lr:{:.5f}'.format(lr))
# # train for one epoch
# self.train(train_loader, model, criterion, optimizer, epoch)
# # evaluate on validation set
# with torch.no_grad():
# prec1 = self.validate(val_loader, model, criterion)
# # remember best prec@1 and save checkpoint
# is_best = prec1 > self.state['best_score']
# self.state['best_score'] = max(prec1, self.state['best_score'])
# self.save_checkpoint({
# 'epoch': epoch + 1,
# 'arch': self._state('arch'),
# 'state_dict': model.module.state_dict() if self.state['use_gpu'] else model.state_dict(),
# 'best_score': self.state['best_score'],
# }, is_best)
# print(' *** best={best:.3f}'.format(best=self.state['best_score']))
# self.state['log_path'].close()
# return self.state['best_score']
# def train(self, data_loader, model, criterion, optimizer, epoch):
# # switch to train mode
# model.train()
# self.on_start_epoch(True, model, criterion, data_loader, optimizer)
# if self.state['use_pb']:
# data_loader = tqdm(data_loader, desc='Training')
# end = time.time()
# for i, (input, target) in enumerate(data_loader):
# # measure data loading time
# self.state['iteration'] = i
# self.state['data_time_batch'] = time.time() - end
# self.state['data_time'].add(self.state['data_time_batch'])
# self.state['input'] = input
# self.state['target'] = target
# self.on_start_batch(True, model, criterion, data_loader, optimizer)
# if self.state['use_gpu']:
# self.state['target'] = self.state['target'].cuda()
# self.on_forward(True, model, criterion, data_loader, optimizer)
# # measure elapsed time
# self.state['batch_time_current'] = time.time() - end
# self.state['batch_time'].add(self.state['batch_time_current'])
# end = time.time()
# # measure accuracy
# self.on_end_batch(True, model, criterion, data_loader, optimizer)
# self.on_end_epoch(True, model, criterion, data_loader, optimizer)
# def validate(self, data_loader, model, criterion):
# # switch to evaluate mode
# model.eval()
# self.on_start_epoch(False, model, criterion, data_loader)
# if self.state['use_pb']:
# data_loader = tqdm(data_loader, desc='Test')
# end = time.time()
# for i, (input, target) in enumerate(data_loader):
# # measure data loading time
# self.state['iteration'] = i
# self.state['data_time_batch'] = time.time() - end
# self.state['data_time'].add(self.state['data_time_batch'])
# self.state['input'] = input
# self.state['target'] = target
# self.on_start_batch(False, model, criterion, data_loader)
# if self.state['use_gpu']:
# self.state['target'] = self.state['target'].cuda()
# self.on_forward(False, model, criterion, data_loader)
# # measure elapsed time
# self.state['batch_time_current'] = time.time() - end
# self.state['batch_time'].add(self.state['batch_time_current'])
# end = time.time()
# # measure accuracy
# self.on_end_batch(False, model, criterion, data_loader)
# score = self.on_end_epoch(False, model, criterion, data_loader)
# return score
# def save_checkpoint(self, state, is_best, filename='checkpoint.pth.tar'):
# if self._state('save_model_path') is not None:
# filename_ = filename
# filename = os.path.join(self.state['save_model_path'], filename_)
# if not os.path.exists(self.state['save_model_path']):
# os.makedirs(self.state['save_model_path'])
# print('save model {filename}'.format(filename=filename))
# torch.save(state, filename)
# if is_best:
# filename_best = 'model_best.pth.tar'
# if self._state('save_model_path') is not None:
# filename_best = os.path.join(self.state['save_model_path'], filename_best)
# shutil.copyfile(filename, filename_best)
# if self._state('save_model_path') is not None:
# if self._state('filename_previous_best') is not None:
# os.remove(self._state('filename_previous_best'))
# filename_best = os.path.join(self.state['save_model_path'], 'model_best_{score:.4f}.pth.tar'.format(score=state['best_score']))
# shutil.copyfile(filename, filename_best)
# self.state['filename_previous_best'] = filename_best
# def adjust_learning_rate(self, optimizer):
# """Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
# # lr = args.lr * (0.1 ** (epoch // 30))
# decay = 0.1 ** (sum(self.state['epoch'] >= np.array(self.state['epoch_step'])))
# lr = self.state['lr'] * decay
# for param_group in optimizer.param_groups:
# param_group['lr'] = lr
# return lr
# class MultiLabelEngine(Engine):
# def __init__(self, state):
# Engine.__init__(self, state)
# if self._state('difficult_examples') is None:
# self.state['difficult_examples'] = False
# self.state['ap_meter'] = AveragePrecisionMeter(self.state['difficult_examples'])
# def on_start_epoch(self, training, model, criterion, data_loader, optimizer=None, display=True):
# self.state['meter_loss'].reset()
# self.state['batch_time'].reset()
# self.state['data_time'].reset()
# self.state['ap_meter'].reset()
# def on_end_epoch(self, training, model, criterion, data_loader, optimizer=None, display=True):
# map = 100 * self.state['ap_meter'].value().mean()
# loss = self.state['meter_loss'].value()[0]
# OP, OR, OF1, CP, CR, CF1 = self.state['ap_meter'].overall()
# OP_k, OR_k, OF1_k, CP_k, CR_k, CF1_k = self.state['ap_meter'].overall_topk(3)
# if display:
# if training:
# print('Epoch: [{0}]\t'
# 'Loss {loss:.4f}\t'
# 'mAP {map:.3f}'.format(self.state['epoch'], loss=loss, map=map))
# print('OP: {OP:.4f}\t'
# 'OR: {OR:.4f}\t'
# 'OF1: {OF1:.4f}\t'
# 'CP: {CP:.4f}\t'
# 'CR: {CR:.4f}\t'
# 'CF1: {CF1:.4f}'.format(OP=OP, OR=OR, OF1=OF1, CP=CP, CR=CR, CF1=CF1))
# self.state['log_path'].write('Epoch: [{0}]\t'
# 'Loss {loss:.4f}\t'
# 'mAP {map:.3f}'.format(self.state['epoch'], loss=loss, map=map)+'\n')
# self.state['log_path'].write('OP: {OP:.4f}\t'
# 'OR: {OR:.4f}\t'
# 'OF1: {OF1:.4f}\t'
# 'CP: {CP:.4f}\t'
# 'CR: {CR:.4f}\t'
# 'CF1: {CF1:.4f}'.format(OP=OP, OR=OR, OF1=OF1, CP=CP, CR=CR, CF1=CF1)+'\n')
# else:
# print('Test: \t Loss {loss:.4f}\t mAP {map:.3f}'.format(loss=loss, map=map))
# print('OP: {OP:.4f}\t'
# 'OR: {OR:.4f}\t'
# 'OF1: {OF1:.4f}\t'
# 'CP: {CP:.4f}\t'
# 'CR: {CR:.4f}\t'
# 'CF1: {CF1:.4f}'.format(OP=OP, OR=OR, OF1=OF1, CP=CP, CR=CR, CF1=CF1))
# print('OP_3: {OP:.4f}\t'
# 'OR_3: {OR:.4f}\t'
# 'OF1_3: {OF1:.4f}\t'
# 'CP_3: {CP:.4f}\t'
# 'CR_3: {CR:.4f}\t'
# 'CF1_3: {CF1:.4f}'.format(OP=OP_k, OR=OR_k, OF1=OF1_k, CP=CP_k, CR=CR_k, CF1=CF1_k))
# self.state['log_path'].write('Test: \t Loss {loss:.4f}\t mAP {map:.3f}'.format(loss=loss, map=map)+'\n')
# self.state['log_path'].write('OP: {OP:.4f}\t'
# 'OR: {OR:.4f}\t'
# 'OF1: {OF1:.4f}\t'
# 'CP: {CP:.4f}\t'
# 'CR: {CR:.4f}\t'
# 'CF1: {CF1:.4f}'.format(OP=OP, OR=OR, OF1=OF1, CP=CP, CR=CR, CF1=CF1)+'\n')
# self.state['log_path'].write('OP_3: {OP:.4f}\t'
# 'OR_3: {OR:.4f}\t'
# 'OF1_3: {OF1:.4f}\t'
# 'CP_3: {CP:.4f}\t'
# 'CR_3: {CR:.4f}\t'
# 'CF1_3: {CF1:.4f}'.format(OP=OP_k, OR=OR_k, OF1=OF1_k, CP=CP_k, CR=CR_k, CF1=CF1_k)+'\n')
# return map
# def on_start_batch(self, training, model, criterion, data_loader, optimizer=None, display=True):
# self.state['target_gt'] = self.state['target'].clone()
# self.state['target'][self.state['target'] == 0] = 1
# self.state['target'][self.state['target'] == -1] = 0
# input = self.state['input']
# self.state['feature'] = input[0]
# self.state['out'] = input[1]
# def on_end_batch(self, training, model, criterion, data_loader, optimizer=None, display=True):
# self.state['loss_batch'] = self.state['loss'].item()
# self.state['meter_loss'].add(self.state['loss_batch'])
# # measure mAP
# self.state['ap_meter'].add(self.state['output'].data, self.state['target_gt'])
# if display and self.state['print_freq'] != 0 and self.state['iteration'] % self.state['print_freq'] == 0:
# loss = self.state['meter_loss'].value()[0]
# batch_time = self.state['batch_time'].value()[0]
# data_time = self.state['data_time'].value()[0]
# if training:
# print('Epoch: [{0}][{1}/{2}]\t'
# 'Time {batch_time_current:.3f} ({batch_time:.3f})\t'
# 'Data {data_time_current:.3f} ({data_time:.3f})\t'
# 'Loss {loss_current:.4f} ({loss:.4f})'.format(
# self.state['epoch'], self.state['iteration'], len(data_loader),
# batch_time_current=self.state['batch_time_current'],
# batch_time=batch_time, data_time_current=self.state['data_time_batch'],
# data_time=data_time, loss_current=self.state['loss_batch'], loss=loss))
# else:
# print('Test: [{0}/{1}]\t'
# 'Time {batch_time_current:.3f} ({batch_time:.3f})\t'
# 'Data {data_time_current:.3f} ({data_time:.3f})\t'
# 'Loss {loss_current:.4f} ({loss:.4f})'.format(
# self.state['iteration'], len(data_loader), batch_time_current=self.state['batch_time_current'],
# batch_time=batch_time, data_time_current=self.state['data_time_batch'],
# data_time=data_time, loss_current=self.state['loss_batch'], loss=loss))
# def on_forward(self, training, model, criterion, data_loader, optimizer=None, display=True):
# feature_var = self.state['feature']
# target_var = self.state['target']
# #print(type(feature_var),feature_var.size())
# # compute output
# self.state['output'] = model(feature_var)
# self.state['loss'] = criterion(self.state['output'], target_var)
# if training:
# optimizer.zero_grad()
# self.state['loss'].backward()
# nn.utils.clip_grad_norm(model.parameters(), max_norm=10.0)
# optimizer.step()
class AveragePrecisionMeter(object):
"""
The APMeter measures the average precision per class.
The APMeter is designed to operate on `NxK` Tensors `output` and
`target`, and optionally a `Nx1` Tensor weight where (1) the `output`
contains model output scores for `N` examples and `K` classes that ought to
be higher when the model is more convinced that the example should be
positively labeled, and smaller when the model believes the example should
be negatively labeled (for instance, the output of a sigmoid function); (2)
the `target` contains only values 0 (for negative examples) and 1
(for positive examples); and (3) the `weight` ( > 0) represents weight for
each sample.
"""
def __init__(self, difficult_examples=False):
super(AveragePrecisionMeter, self).__init__()
self.reset()
self.difficult_examples = difficult_examples
def reset(self):
"""Resets the meter with empty member variables"""
self.scores = torch.FloatTensor(torch.FloatStorage())
self.targets = torch.LongTensor(torch.LongStorage())
def add(self, output, target):
"""
Args:
output (Tensor): NxK tensor that for each of the N examples
indicates the probability of the example belonging to each of
the K classes, according to the model. The probabilities should
sum to one over all classes
target (Tensor): binary NxK tensort that encodes which of the K
classes are associated with the N-th input
(eg: a row [0, 1, 0, 1] indicates that the example is
associated with classes 2 and 4)
weight (optional, Tensor): Nx1 tensor representing the weight for
each example (each weight > 0)
"""
if not torch.is_tensor(output):
output = torch.from_numpy(output)
if not torch.is_tensor(target):
target = torch.from_numpy(target)
if output.dim() == 1:
output = output.view(-1, 1)
else:
assert output.dim() == 2, \
'wrong output size (should be 1D or 2D with one column \
per class)'
if target.dim() == 1:
target = target.view(-1, 1)
else:
assert target.dim() == 2, \
'wrong target size (should be 1D or 2D with one column \
per class)'
if self.scores.numel() > 0:
assert target.size(1) == self.targets.size(1), \
'dimensions for output should match previously added examples.'
# make sure storage is of sufficient size
if self.scores.storage().size() < self.scores.numel() + output.numel():
new_size = math.ceil(self.scores.storage().size() * 1.5)
self.scores.storage().resize_(int(new_size + output.numel()))
self.targets.storage().resize_(int(new_size + output.numel()))
# store scores and targets
offset = self.scores.size(0) if self.scores.dim() > 0 else 0
self.scores.resize_(offset + output.size(0), output.size(1))
self.targets.resize_(offset + target.size(0), target.size(1))
self.scores.narrow(0, offset, output.size(0)).copy_(output)
self.targets.narrow(0, offset, target.size(0)).copy_(target)
def value(self):
"""Returns the model's average precision for each class
Return:
ap (FloatTensor): 1xK tensor, with avg precision for each class k
"""
if self.scores.numel() == 0:
return 0
ap = torch.zeros(self.scores.size(1))
rg = torch.arange(1, self.scores.size(0)).float()
# self.save_to_mat()
# self.save_to_np()
# compute average precision for each class
for k in range(self.scores.size(1)):
# sort scores
scores = self.scores[:, k]
targets = self.targets[:, k]
# compute average precision
ap[k] = AveragePrecisionMeter.average_precision(scores, targets, self.difficult_examples)
return ap
@staticmethod
def average_precision(output, target, difficult_examples=True):
if target.sum() == 0:
return 0
else:
# sort examples
sorted, indices = torch.sort(output, dim=0, descending=True)
# Computes prec@i
pos_count = 0.
total_count = 0.
precision_at_i = 0.
for i in indices:
label = target[i]
if difficult_examples and label == 0:
continue
if label == 1:
pos_count += 1
total_count += 1
if label == 1:
precision_at_i += pos_count / total_count
precision_at_i /= pos_count
return precision_at_i
def overall(self):
if self.scores.numel() == 0:
return 0
scores = self.scores.cpu().numpy()
targets = self.targets.cpu().numpy()
targets[targets == -1] = 0
return self.evaluation(scores, targets)
def overall_topk(self, k):
targets = self.targets.cpu().numpy()
targets[targets == -1] = 0
n, c = self.scores.size()
scores = np.zeros((n, c)) - 1
index = self.scores.topk(k, 1, True, True)[1].cpu().numpy()
tmp = self.scores.cpu().numpy()
for i in range(n):
for ind in index[i]:
scores[i, ind] = 1 if tmp[i, ind] >= 0 else -1
return self.evaluation(scores, targets)
def evaluation(self, scores_, targets_):
n, n_class = scores_.shape
Nc, Np, Ng = np.zeros(n_class), np.zeros(n_class), np.zeros(n_class)
for k in range(n_class):
scores = scores_[:, k]
targets = targets_[:, k]
targets[targets == -1] = 0
Ng[k] = np.sum(targets == 1)
Np[k] = np.sum(scores >= 0)
Nc[k] = np.sum(targets * (scores >= 0))
Np[Np == 0] = 1
OP = np.sum(Nc) / np.sum(Np)
OR = np.sum(Nc) / np.sum(Ng)
OF1 = (2 * OP * OR) / (OP + OR)
CP = np.sum(Nc / Np) / n_class
CR = np.sum(Nc / Ng) / n_class
CF1 = (2 * CP * CR) / (CP + CR)
return OP, OR, OF1, CP, CR, CF1
|