File size: 11,105 Bytes
b3cdf05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import torch
import torch.nn.functional as F
from collections import OrderedDict
from os import path as osp
import os
from tqdm import tqdm
import sys
sys.path.append(os.getcwd())
from basicsr.archs import build_network
from basicsr.losses import build_loss
from basicsr.metrics import calculate_metric
from basicsr.utils import get_root_logger, imwrite, tensor2img
from basicsr.utils.registry import MODEL_REGISTRY
from .base_model import BaseModel


from ram.models.ram import ram as ram_fix
from ram.models.ram_lora import ram as ram

import numpy as np
import copy
import loralib as lora
import time
from typing import Dict

@MODEL_REGISTRY.register()
class DAPEModel(BaseModel):
    """Base SR model for single image super-resolution."""

    def __init__(self, opt):
        super(DAPEModel, self).__init__(opt)

        # print(opt)

        # degradation-aware prompt extractor
        self.net_g = ram(pretrained=opt['ram_model_path'], image_size=384, vit='swin_l')
        self.net_g = self.model_to_device(self.net_g)

        # original ram model
        self.net_g_fix = ram_fix(pretrained=opt['ram_model_path'], image_size=384, vit='swin_l')
        self.net_g_fix = self.model_to_device(self.net_g_fix)
        self.net_g_fix.eval()

        self.print_network(self.net_g)

        # load pretrained models
        load_path = self.opt['path'].get('pretrain_network_g', None)
        if load_path is not None:
            param_key = self.opt['path'].get('param_key_g', 'params')
            self.load_network(self.net_g, load_path, self.opt['path'].get('strict_load_g', True), param_key)

        if self.is_train:
            self.init_training_settings()

    def init_training_settings(self):
        self.net_g.train()

        train_opt = self.opt['train']

        self.ema_decay = train_opt.get('ema_decay', 0)
        if self.ema_decay > 0:
            logger = get_root_logger()
            logger.info(f'Use Exponential Moving Average with decay: {self.ema_decay}')
            # define network net_g with Exponential Moving Average (EMA)
            # net_g_ema is used only for testing on one GPU and saving
            # There is no need to wrap with DistributedDataParallel
            self.net_g_ema = build_network(self.opt['network_g']).to(self.device)
            # load pretrained model
            load_path = self.opt['path'].get('pretrain_network_g', None)
            if load_path is not None:
                self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema')
            else:
                self.model_ema(0)  # copy net_g weight
            self.net_g_ema.eval()

        # define losses
        if train_opt.get('cri_feature_opt'):
            self.cri_feature = build_loss(train_opt['cri_feature_opt']).to(self.device)
        else:
            self.cri_feature = None

        # lora setting
        lora.mark_only_lora_as_trainable(self.net_g)
        
        # set up optimizers and schedulers
        self.setup_optimizers()
        self.setup_schedulers()


    def setup_optimizers(self):

        train_opt = self.opt['train']
        optim_params = []
        for k, v in self.net_g.named_parameters():
            if v.requires_grad:
                optim_params.append(v)
            else:
                logger = get_root_logger()
                logger.warning(f'Params {k} will not be optimized.')


        optim_type = train_opt['optim_g'].pop('type')
        self.optimizer_g = self.get_optimizer(optim_type, optim_params, **train_opt['optim_g'])
        self.optimizers.append(self.optimizer_g)

    def feed_data(self, data):
        self.lq = data['lq'].to(self.device)
        self.gt = data['gt'].to(self.device)
        self.lq_ram = data['lq_ram'].to(self.device)
        self.gt_ram = data['gt_ram'].to(self.device)

    def optimize_parameters(self, current_iter):
        self.optimizer_g.zero_grad()


        # single gpu training
        with torch.no_grad():
            feature_gt, logits_gt, _ = self.net_g_fix.condition_forward(self.gt_ram, only_feature=False)
        feature_lq, logits_lq, _ = self.net_g.condition_forward(self.lq_ram, only_feature=False)
        
        ## multi-gpus training
        # with torch.no_grad():
        #     feature_gt, logits_gt, _ = self.net_g_fix.module.condition_forward(self.gt_ram, only_feature=False)
        # feature_lq, logits_lq, _ = self.net_g.module.condition_forward(self.lq_ram, only_feature=False) 
        
        l_total = 0
        loss_dict = OrderedDict()

        ## feature loss
        l_fea = self.cri_feature(feature_lq, feature_gt)
        l_total += l_fea
        loss_dict['l_fea'] = l_fea

        ## logits loss
        sigmoid_lq = torch.sigmoid(logits_lq)
        sigmoid_gt = torch.sigmoid(logits_gt)
        l_logits = -(sigmoid_gt*torch.log(sigmoid_lq) + (1-sigmoid_gt)*torch.log(1-sigmoid_lq))
        l_logits = 1.0 * l_logits.mean()
        l_total += l_logits
        loss_dict['l_logits'] = l_logits

        l_total.backward()
        self.optimizer_g.step()

        self.log_dict = self.reduce_loss_dict(loss_dict)

        if self.ema_decay > 0:
            self.model_ema(decay=self.ema_decay)


        del self.lq, self.gt, feature_gt
        del feature_lq

    def test(self):
        if hasattr(self, 'net_g_ema'):
            self.net_g_ema.eval()
            with torch.no_grad():
                self.output = self.net_g_ema(self.lq)
        else:
            self.net_g.eval()
            self.lq_enhancer.eval()
            with torch.no_grad():
                self.feature_gt, self.logits_gt, self.targets_gt = self.net_g_fix.condition_forward(self.gt, only_feature=False)
                self.feature_lq, self.logits_lq, self.targets_lq = self.net_g.condition_forward(self.lq, only_feature=False)

            self.net_g.train()

    def dist_validation(self, dataloader, current_iter, tb_logger, save_img):
        if self.opt['rank'] == 0:
            self.nondist_validation(dataloader, current_iter, tb_logger, save_img)

    def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):
        dataset_name = dataloader.dataset.opt['name']
        with_metrics = self.opt['val'].get('metrics') is not None
        use_pbar = self.opt['val'].get('pbar', False)

        if with_metrics:
            if not hasattr(self, 'metric_results'):  # only execute in the first run
                self.metric_results = {metric: 0 for metric in self.opt['val']['metrics'].keys()}
            # initialize the best metric results for each dataset_name (supporting multiple validation datasets)
            self._initialize_best_metric_results(dataset_name)
        # zero self.metric_results
        if with_metrics:
            self.metric_results = {metric: 0 for metric in self.metric_results}

        metric_data = dict()
        if use_pbar:
            pbar = tqdm(total=len(dataloader), unit='image')
  
        if use_pbar:
            pbar.close()

    def _log_validation_metric_values(self, current_iter, dataset_name, tb_logger):
        log_str = f'Validation {dataset_name}\n'
        for metric, value in self.metric_results.items():
            log_str += f'\t # {metric}: {value:.4f}'
            if hasattr(self, 'best_metric_results'):
                log_str += (f'\tBest: {self.best_metric_results[dataset_name][metric]["val"]:.4f} @ '
                            f'{self.best_metric_results[dataset_name][metric]["iter"]} iter')
            log_str += '\n'

        logger = get_root_logger()
        logger.info(log_str)
        if tb_logger:
            for metric, value in self.metric_results.items():
                tb_logger.add_scalar(f'metrics/{dataset_name}/{metric}', value, current_iter)

    def get_current_visuals(self):
        out_dict = OrderedDict()
        out_dict['lq'] = self.lq.detach().cpu()
        out_dict['result'] = self.output.detach().cpu()
        if hasattr(self, 'gt'):
            out_dict['gt'] = self.gt.detach().cpu()
        return out_dict

    def save(self, epoch, current_iter):
        if hasattr(self, 'net_g_ema'):
            self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema'])
        else:
            self.save_network_lora(self.net_g, 'net_g', current_iter)
        self.save_training_state(epoch, current_iter)

    def save_network_lora(self, net, net_label, current_iter, param_key='params'):
        """Save networks.

        Args:
            net (nn.Module | list[nn.Module]): Network(s) to be saved.
            net_label (str): Network label.
            current_iter (int): Current iter number.
            param_key (str | list[str]): The parameter key(s) to save network.
                Default: 'params'.
        """
        if current_iter == -1:
            current_iter = 'latest'
        save_filename = f'{net_label}_{current_iter}.pth'
        save_path = os.path.join(self.opt['path']['models'], save_filename)

        net = net if isinstance(net, list) else [net]
        param_key = param_key if isinstance(param_key, list) else [param_key]
        assert len(net) == len(param_key), 'The lengths of net and param_key should be the same.'

        save_dict = {}
        for net_, param_key_ in zip(net, param_key):
            net_ = self.get_bare_model(net_)
            state_dict = net_.state_dict()
            for key, param in state_dict.items():
                if key.startswith('module.'):  # remove unnecessary 'module.'
                    key = key[7:]
                state_dict[key] = param.cpu()
            save_dict[param_key_] = state_dict

        # avoid occasional writing errors
        retry = 3
        while retry > 0:
            try:
                # torch.save(save_dict, save_path)
                torch.save(self.lora_state_dict(save_dict['params']), save_path)
            except Exception as e:
                logger = get_root_logger()
                logger.warning(f'Save model error: {e}, remaining retry times: {retry - 1}')
                time.sleep(1)
            else:
                break
            finally:
                retry -= 1
        if retry == 0:
            logger.warning(f'Still cannot save {save_path}. Just ignore it.')
            # raise IOError(f'Cannot save {save_path}.')

    def lora_state_dict(self, my_state_dict , bias: str = 'none') -> Dict[str, torch.Tensor]:

        if bias == 'none':
            return {k: my_state_dict[k] for k in my_state_dict if 'lora_' in k}
        elif bias == 'all':
            return {k: my_state_dict[k] for k in my_state_dict if 'lora_' in k or 'bias' in k}
        elif bias == 'lora_only':
            to_return = {}
            for k in my_state_dict:
                if 'lora_' in k:
                    to_return[k] = my_state_dict[k]
                    bias_name = k.split('lora_')[0]+'bias'
                    if bias_name in my_state_dict:
                        to_return[bias_name] = my_state_dict[bias_name]
            return to_return
        else:
            raise NotImplementedError