SuperResolution / app.py
alexnasa's picture
Update app.py
5d4b5c6 verified
raw
history blame
14.8 kB
import spaces
import gradio as gr
import os
import sys
from typing import List
# sys.path.append(os.getcwd())
import numpy as np
from PIL import Image
import torch
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
from gradio_imageslider import ImageSlider
print(f'torch version:{torch.__version__}')
# import subprocess
# import importlib, site, sys
# # Re-discover all .pth/.egg-link files
# for sitedir in site.getsitepackages():
# site.addsitedir(sitedir)
# # Clear caches so importlib will pick up new modules
# importlib.invalidate_caches()
# def sh(cmd): subprocess.check_call(cmd, shell=True)
# sh("pip install -U xformers --index-url https://download.pytorch.org/whl/cu126")
# # tell Python to re-scan site-packages now that the egg-link exists
# import importlib, site; site.addsitedir(site.getsitepackages()[0]); importlib.invalidate_caches()
import torch.utils.checkpoint
from pytorch_lightning import seed_everything
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor
from huggingface_hub import hf_hub_download, snapshot_download
from pipelines.pipeline_seesr import StableDiffusionControlNetPipeline
from utils.wavelet_color_fix import wavelet_color_fix, adain_color_fix
from ram.models.ram_lora import ram
from ram import inference_ram as inference
from torchvision import transforms
from models.controlnet import ControlNetModel
from models.unet_2d_condition import UNet2DConditionModel
VLM_NAME = "Qwen/Qwen2.5-VL-3B-Instruct"
vlm_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
VLM_NAME,
torch_dtype="auto",
device_map="auto" # immediately dispatches layers onto available GPUs
)
vlm_processor = AutoProcessor.from_pretrained(VLM_NAME)
def _generate_vlm_prompt(
vlm_model: Qwen2_5_VLForConditionalGeneration,
vlm_processor: AutoProcessor,
process_vision_info,
pil_image: Image.Image,
device: str = "cuda"
) -> str:
"""
Given two PIL.Image inputs:
- prev_pil: the “full” image at the previous recursion.
- zoomed_pil: the cropped+resized (zoom) image for this step.
Returns a single “recursive_multiscale” prompt string.
"""
message_text = (
"The give a detailed description of this image."
"describe each element with fine details."
)
messages = [
{"role": "system", "content": message_text},
{
"role": "user",
"content": [
{"type": "image", "image": pil_image},
],
},
]
text = vlm_processor.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = vlm_processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
).to(device)
generated = vlm_model.generate(**inputs, max_new_tokens=128)
trimmed = [
out_ids[len(in_ids):]
for in_ids, out_ids in zip(inputs.input_ids, generated)
]
out_text = vlm_processor.batch_decode(
trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
return out_text.strip()
tensor_transforms = transforms.Compose([
transforms.ToTensor(),
])
ram_transforms = transforms.Compose([
transforms.Resize((384, 384)),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
snapshot_download(
repo_id="alexnasa/SEESR",
local_dir="preset/models"
)
snapshot_download(
repo_id="stabilityai/stable-diffusion-2-1-base",
local_dir="preset/models/stable-diffusion-2-1-base"
)
snapshot_download(
repo_id="xinyu1205/recognize_anything_model",
local_dir="preset/models/"
)
# Load scheduler, tokenizer and models.
pretrained_model_path = 'preset/models/stable-diffusion-2-1-base'
seesr_model_path = 'preset/models/seesr'
scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
feature_extractor = CLIPImageProcessor.from_pretrained(f"{pretrained_model_path}/feature_extractor")
unet = UNet2DConditionModel.from_pretrained(seesr_model_path, subfolder="unet")
controlnet = ControlNetModel.from_pretrained(seesr_model_path, subfolder="controlnet")
# Freeze vae and text_encoder
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
unet.requires_grad_(False)
controlnet.requires_grad_(False)
# unet.to("cuda")
# controlnet.to("cuda")
# unet.enable_xformers_memory_efficient_attention()
# controlnet.enable_xformers_memory_efficient_attention()
# Get the validation pipeline
validation_pipeline = StableDiffusionControlNetPipeline(
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, feature_extractor=None,
unet=unet, controlnet=controlnet, scheduler=scheduler, safety_checker=None, requires_safety_checker=False,
)
validation_pipeline._init_tiled_vae(encoder_tile_size=1024,
decoder_tile_size=224)
weight_dtype = torch.float16
device = "cuda"
# Move text_encode and vae to gpu and cast to weight_dtype
text_encoder.to(device, dtype=weight_dtype)
vae.to(device, dtype=weight_dtype)
unet.to(device, dtype=weight_dtype)
controlnet.to(device, dtype=weight_dtype)
tag_model = ram(pretrained='preset/models/ram_swin_large_14m.pth',
pretrained_condition='preset/models/DAPE.pth',
image_size=384,
vit='swin_l')
tag_model.eval()
tag_model.to(device, dtype=weight_dtype)
@spaces.GPU(duration=120)
def process(
input_image: Image.Image,
user_prompt: str,
use_KDS: bool,
bandwidth: float,
patch_size: int,
num_particles: int,
positive_prompt: str,
negative_prompt: str,
num_inference_steps: int,
scale_factor: int,
cfg_scale: float,
seed: int,
latent_tiled_size: int,
latent_tiled_overlap: int,
sample_times: int
) -> List[np.ndarray]:
process_size = 512
resize_preproc = transforms.Compose([
transforms.Resize(process_size, interpolation=transforms.InterpolationMode.BILINEAR),
])
prompt_tag = _generate_vlm_prompt(
vlm_model=vlm_model,
vlm_processor=vlm_processor,
process_vision_info=process_vision_info,
pil_image=input_image,
device=device,
)
print(f'oh lala, prompt tag:{prompt_tag}')
# with torch.no_grad():
seed_everything(seed)
generator = torch.Generator(device=device)
validation_prompt = ""
lq = tensor_transforms(input_image).unsqueeze(0).to(device).half()
lq = ram_transforms(lq)
res = inference(lq, tag_model)
ram_encoder_hidden_states = tag_model.generate_image_embeds(lq)
validation_prompt = f"{res[0]}, {positive_prompt},"
validation_prompt = validation_prompt if user_prompt=='' else f"{user_prompt}, {validation_prompt}"
ori_width, ori_height = input_image.size
resize_flag = False
rscale = scale_factor
input_image = input_image.resize((int(input_image.size[0] * rscale), int(input_image.size[1] * rscale)))
if min(input_image.size) < process_size:
input_image = resize_preproc(input_image)
input_image = input_image.resize((input_image.size[0] // 8 * 8, input_image.size[1] // 8 * 8))
width, height = input_image.size
resize_flag = True #
images = []
for _ in range(sample_times):
try:
with torch.autocast("cuda"):
image = validation_pipeline(
validation_prompt, input_image, negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps, generator=generator,
height=height, width=width,
guidance_scale=cfg_scale, conditioning_scale=1,
start_point='lr', start_steps=999,ram_encoder_hidden_states=ram_encoder_hidden_states,
latent_tiled_size=latent_tiled_size, latent_tiled_overlap=latent_tiled_overlap,
use_KDS=use_KDS, bandwidth=bandwidth, num_particles=num_particles, patch_size=patch_size,
).images[0]
if True: # alpha<1.0:
image = wavelet_color_fix(image, input_image)
if resize_flag:
image = image.resize((ori_width * rscale, ori_height * rscale))
except Exception as e:
print(e)
image = Image.new(mode="RGB", size=(512, 512))
images.append(np.array(image))
return input_image, images[0]
#
MARKDOWN = \
"""
## SeeSR: Towards Semantics-Aware Real-World Image Super-Resolution
[GitHub](https://github.com/cswry/SeeSR) | [Paper](https://arxiv.org/abs/2311.16518)
If SeeSR is helpful for you, please help star the GitHub Repo. Thanks!
"""
block = gr.Blocks().queue()
with block:
with gr.Row():
gr.Markdown(MARKDOWN)
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil")
num_particles = gr.Slider(label="Num of Partickes", minimum=1, maximum=16, step=1, value=10)
bandwidth = gr.Slider(label="Bandwidth", minimum=0.1, maximum=0.8, step=0.1, value=0.1)
patch_size = gr.Slider(label="Patch Size", minimum=1, maximum=16, step=1, value=16)
use_KDS = gr.Checkbox(label="Use Kernel Density Steering")
run_button = gr.Button("Run")
with gr.Accordion("Options", open=True):
user_prompt = gr.Textbox(label="User Prompt", value="")
positive_prompt = gr.Textbox(label="Positive Prompt", value="clean, high-resolution, 8k, best quality, masterpiece")
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality"
)
cfg_scale = gr.Slider(label="Classifier Free Guidance Scale (Set to 1.0 in sd-turbo)", minimum=1, maximum=10, value=7.5, step=0)
num_inference_steps = gr.Slider(label="Inference Steps", minimum=2, maximum=100, value=50, step=1)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=231)
sample_times = gr.Slider(label="Sample Times", minimum=1, maximum=10, step=1, value=1)
latent_tiled_size = gr.Slider(label="Diffusion Tile Size", minimum=128, maximum=480, value=320, step=1)
latent_tiled_overlap = gr.Slider(label="Diffusion Tile Overlap", minimum=4, maximum=16, value=4, step=1)
scale_factor = gr.Number(label="SR Scale", value=4)
with gr.Column():
result_gallery = ImageSlider(
interactive=False,
label="Generated Image",
)
examples = gr.Examples(
examples=[
[
"preset/datasets/test_datasets/man.png",
"",
False,
0.1,
4,
4,
"clean, high-resolution, 8k, best quality, masterpiece",
"dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
50,
4,
7.5,
123,
320,
4,
1,
],
[
"preset/datasets/test_datasets/man.png",
"",
True,
0.1,
16,
4,
"clean, high-resolution, 8k, best quality, masterpiece",
"dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
50,
4,
7.5,
123,
320,
4,
1,
],
[
"preset/datasets/test_datasets/man.png",
"",
True,
0.1,
4,
4,
"clean, high-resolution, 8k, best quality, masterpiece",
"dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
50,
4,
7.5,
123,
320,
4,
1,
],
],
inputs=[
input_image,
user_prompt,
use_KDS,
bandwidth,
patch_size,
num_particles,
positive_prompt,
negative_prompt,
num_inference_steps,
scale_factor,
cfg_scale,
seed,
latent_tiled_size,
latent_tiled_overlap,
sample_times,
],
outputs=[result_gallery],
fn=process,
cache_examples=True,
)
inputs = [
input_image,
user_prompt,
use_KDS,
bandwidth,
patch_size,
num_particles,
positive_prompt,
negative_prompt,
num_inference_steps,
scale_factor,
cfg_scale,
seed,
latent_tiled_size,
latent_tiled_overlap,
sample_times,
]
run_button.click(fn=process, inputs=inputs, outputs=[result_gallery])
block.launch(share=True)