Spaces:
Running
on
Zero
Running
on
Zero
Upload 4 files
Browse files- models/controlnet.py +832 -0
- models/unet_2d_blocks.py +0 -0
- models/unet_2d_condition.py +1071 -0
- pipelines/pipeline_seesr.py +1225 -0
models/controlnet.py
ADDED
@@ -0,0 +1,832 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
from torch import nn
|
19 |
+
from torch.nn import functional as F
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.loaders import FromOriginalControlnetMixin
|
23 |
+
from diffusers.utils import BaseOutput, logging
|
24 |
+
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
|
25 |
+
from diffusers.models.embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps
|
26 |
+
from diffusers.models.modeling_utils import ModelMixin
|
27 |
+
from .unet_2d_blocks import (
|
28 |
+
CrossAttnDownBlock2D,
|
29 |
+
DownBlock2D,
|
30 |
+
UNetMidBlock2DCrossAttn,
|
31 |
+
get_down_block,
|
32 |
+
)
|
33 |
+
from .unet_2d_condition import UNet2DConditionModel
|
34 |
+
|
35 |
+
|
36 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class ControlNetOutput(BaseOutput):
|
41 |
+
"""
|
42 |
+
The output of [`ControlNetModel`].
|
43 |
+
|
44 |
+
Args:
|
45 |
+
down_block_res_samples (`tuple[torch.Tensor]`):
|
46 |
+
A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
|
47 |
+
be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
|
48 |
+
used to condition the original UNet's downsampling activations.
|
49 |
+
mid_down_block_re_sample (`torch.Tensor`):
|
50 |
+
The activation of the midde block (the lowest sample resolution). Each tensor should be of shape
|
51 |
+
`(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
|
52 |
+
Output can be used to condition the original UNet's middle block activation.
|
53 |
+
"""
|
54 |
+
|
55 |
+
down_block_res_samples: Tuple[torch.Tensor]
|
56 |
+
mid_block_res_sample: torch.Tensor
|
57 |
+
|
58 |
+
|
59 |
+
class ControlNetConditioningEmbedding(nn.Module):
|
60 |
+
"""
|
61 |
+
Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
|
62 |
+
[11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
|
63 |
+
training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
|
64 |
+
convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
|
65 |
+
(activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
|
66 |
+
model) to encode image-space conditions ... into feature maps ..."
|
67 |
+
"""
|
68 |
+
|
69 |
+
def __init__(
|
70 |
+
self,
|
71 |
+
conditioning_embedding_channels: int,
|
72 |
+
conditioning_channels: int = 3,
|
73 |
+
block_out_channels: Tuple[int] = (16, 32, 96, 256),
|
74 |
+
):
|
75 |
+
super().__init__()
|
76 |
+
|
77 |
+
self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
|
78 |
+
|
79 |
+
self.blocks = nn.ModuleList([])
|
80 |
+
|
81 |
+
for i in range(len(block_out_channels) - 1):
|
82 |
+
channel_in = block_out_channels[i]
|
83 |
+
channel_out = block_out_channels[i + 1]
|
84 |
+
self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
|
85 |
+
self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2))
|
86 |
+
|
87 |
+
self.conv_out = zero_module(
|
88 |
+
nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
|
89 |
+
)
|
90 |
+
|
91 |
+
def forward(self, conditioning):
|
92 |
+
embedding = self.conv_in(conditioning)
|
93 |
+
embedding = F.silu(embedding)
|
94 |
+
|
95 |
+
for block in self.blocks:
|
96 |
+
embedding = block(embedding)
|
97 |
+
embedding = F.silu(embedding)
|
98 |
+
|
99 |
+
embedding = self.conv_out(embedding)
|
100 |
+
|
101 |
+
return embedding
|
102 |
+
|
103 |
+
|
104 |
+
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):
|
105 |
+
"""
|
106 |
+
A ControlNet model.
|
107 |
+
|
108 |
+
Args:
|
109 |
+
in_channels (`int`, defaults to 4):
|
110 |
+
The number of channels in the input sample.
|
111 |
+
flip_sin_to_cos (`bool`, defaults to `True`):
|
112 |
+
Whether to flip the sin to cos in the time embedding.
|
113 |
+
freq_shift (`int`, defaults to 0):
|
114 |
+
The frequency shift to apply to the time embedding.
|
115 |
+
down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
116 |
+
The tuple of downsample blocks to use.
|
117 |
+
only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
|
118 |
+
block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
|
119 |
+
The tuple of output channels for each block.
|
120 |
+
layers_per_block (`int`, defaults to 2):
|
121 |
+
The number of layers per block.
|
122 |
+
downsample_padding (`int`, defaults to 1):
|
123 |
+
The padding to use for the downsampling convolution.
|
124 |
+
mid_block_scale_factor (`float`, defaults to 1):
|
125 |
+
The scale factor to use for the mid block.
|
126 |
+
act_fn (`str`, defaults to "silu"):
|
127 |
+
The activation function to use.
|
128 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
129 |
+
The number of groups to use for the normalization. If None, normalization and activation layers is skipped
|
130 |
+
in post-processing.
|
131 |
+
norm_eps (`float`, defaults to 1e-5):
|
132 |
+
The epsilon to use for the normalization.
|
133 |
+
cross_attention_dim (`int`, defaults to 1280):
|
134 |
+
The dimension of the cross attention features.
|
135 |
+
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
136 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
137 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
138 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
139 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
140 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
141 |
+
dimension to `cross_attention_dim`.
|
142 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
143 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
144 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
145 |
+
attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
|
146 |
+
The dimension of the attention heads.
|
147 |
+
use_linear_projection (`bool`, defaults to `False`):
|
148 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
149 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
|
150 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
151 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
152 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
153 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
154 |
+
num_class_embeds (`int`, *optional*, defaults to 0):
|
155 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
156 |
+
class conditioning with `class_embed_type` equal to `None`.
|
157 |
+
upcast_attention (`bool`, defaults to `False`):
|
158 |
+
resnet_time_scale_shift (`str`, defaults to `"default"`):
|
159 |
+
Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
|
160 |
+
projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
|
161 |
+
The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
|
162 |
+
`class_embed_type="projection"`.
|
163 |
+
controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
|
164 |
+
The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
|
165 |
+
conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`):
|
166 |
+
The tuple of output channel for each block in the `conditioning_embedding` layer.
|
167 |
+
global_pool_conditions (`bool`, defaults to `False`):
|
168 |
+
"""
|
169 |
+
|
170 |
+
_supports_gradient_checkpointing = True
|
171 |
+
|
172 |
+
@register_to_config
|
173 |
+
def __init__(
|
174 |
+
self,
|
175 |
+
in_channels: int = 4,
|
176 |
+
conditioning_channels: int = 3,
|
177 |
+
flip_sin_to_cos: bool = True,
|
178 |
+
freq_shift: int = 0,
|
179 |
+
down_block_types: Tuple[str] = (
|
180 |
+
"CrossAttnDownBlock2D",
|
181 |
+
"CrossAttnDownBlock2D",
|
182 |
+
"CrossAttnDownBlock2D",
|
183 |
+
"DownBlock2D",
|
184 |
+
),
|
185 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
186 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
187 |
+
layers_per_block: int = 2,
|
188 |
+
downsample_padding: int = 1,
|
189 |
+
mid_block_scale_factor: float = 1,
|
190 |
+
act_fn: str = "silu",
|
191 |
+
norm_num_groups: Optional[int] = 32,
|
192 |
+
norm_eps: float = 1e-5,
|
193 |
+
cross_attention_dim: int = 1280,
|
194 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
195 |
+
encoder_hid_dim: Optional[int] = None,
|
196 |
+
encoder_hid_dim_type: Optional[str] = None,
|
197 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
198 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
199 |
+
use_linear_projection: bool = False,
|
200 |
+
class_embed_type: Optional[str] = None,
|
201 |
+
addition_embed_type: Optional[str] = None,
|
202 |
+
addition_time_embed_dim: Optional[int] = None,
|
203 |
+
num_class_embeds: Optional[int] = None,
|
204 |
+
upcast_attention: bool = False,
|
205 |
+
resnet_time_scale_shift: str = "default",
|
206 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
207 |
+
controlnet_conditioning_channel_order: str = "rgb",
|
208 |
+
conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256),
|
209 |
+
global_pool_conditions: bool = False,
|
210 |
+
addition_embed_type_num_heads=64,
|
211 |
+
use_image_cross_attention=False,
|
212 |
+
):
|
213 |
+
super().__init__()
|
214 |
+
|
215 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
216 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
217 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
218 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
219 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
220 |
+
# which is why we correct for the naming here.
|
221 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
222 |
+
|
223 |
+
# Check inputs
|
224 |
+
if len(block_out_channels) != len(down_block_types):
|
225 |
+
raise ValueError(
|
226 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
227 |
+
)
|
228 |
+
|
229 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
230 |
+
raise ValueError(
|
231 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
232 |
+
)
|
233 |
+
|
234 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
235 |
+
raise ValueError(
|
236 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
237 |
+
)
|
238 |
+
|
239 |
+
if isinstance(transformer_layers_per_block, int):
|
240 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
241 |
+
|
242 |
+
# input
|
243 |
+
conv_in_kernel = 3
|
244 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
245 |
+
self.conv_in = nn.Conv2d(
|
246 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
247 |
+
)
|
248 |
+
|
249 |
+
# time
|
250 |
+
time_embed_dim = block_out_channels[0] * 4
|
251 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
252 |
+
timestep_input_dim = block_out_channels[0]
|
253 |
+
self.time_embedding = TimestepEmbedding(
|
254 |
+
timestep_input_dim,
|
255 |
+
time_embed_dim,
|
256 |
+
act_fn=act_fn,
|
257 |
+
)
|
258 |
+
|
259 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
260 |
+
encoder_hid_dim_type = "text_proj"
|
261 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
262 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
263 |
+
|
264 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
265 |
+
raise ValueError(
|
266 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
267 |
+
)
|
268 |
+
|
269 |
+
if encoder_hid_dim_type == "text_proj":
|
270 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
271 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
272 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
273 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
274 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
275 |
+
self.encoder_hid_proj = TextImageProjection(
|
276 |
+
text_embed_dim=encoder_hid_dim,
|
277 |
+
image_embed_dim=cross_attention_dim,
|
278 |
+
cross_attention_dim=cross_attention_dim,
|
279 |
+
)
|
280 |
+
|
281 |
+
elif encoder_hid_dim_type is not None:
|
282 |
+
raise ValueError(
|
283 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
284 |
+
)
|
285 |
+
else:
|
286 |
+
self.encoder_hid_proj = None
|
287 |
+
|
288 |
+
# class embedding
|
289 |
+
if class_embed_type is None and num_class_embeds is not None:
|
290 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
291 |
+
elif class_embed_type == "timestep":
|
292 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
293 |
+
elif class_embed_type == "identity":
|
294 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
295 |
+
elif class_embed_type == "projection":
|
296 |
+
if projection_class_embeddings_input_dim is None:
|
297 |
+
raise ValueError(
|
298 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
299 |
+
)
|
300 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
301 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
302 |
+
# 2. it projects from an arbitrary input dimension.
|
303 |
+
#
|
304 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
305 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
306 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
307 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
308 |
+
else:
|
309 |
+
self.class_embedding = None
|
310 |
+
|
311 |
+
if addition_embed_type == "text":
|
312 |
+
if encoder_hid_dim is not None:
|
313 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
314 |
+
else:
|
315 |
+
text_time_embedding_from_dim = cross_attention_dim
|
316 |
+
|
317 |
+
self.add_embedding = TextTimeEmbedding(
|
318 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
319 |
+
)
|
320 |
+
elif addition_embed_type == "text_image":
|
321 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
322 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
323 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
324 |
+
self.add_embedding = TextImageTimeEmbedding(
|
325 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
326 |
+
)
|
327 |
+
elif addition_embed_type == "text_time":
|
328 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
329 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
330 |
+
|
331 |
+
elif addition_embed_type is not None:
|
332 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
333 |
+
|
334 |
+
# control net conditioning embedding
|
335 |
+
self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
|
336 |
+
conditioning_embedding_channels=block_out_channels[0],
|
337 |
+
block_out_channels=conditioning_embedding_out_channels,
|
338 |
+
conditioning_channels=conditioning_channels,
|
339 |
+
)
|
340 |
+
|
341 |
+
self.down_blocks = nn.ModuleList([])
|
342 |
+
self.controlnet_down_blocks = nn.ModuleList([])
|
343 |
+
|
344 |
+
if isinstance(only_cross_attention, bool):
|
345 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
346 |
+
|
347 |
+
if isinstance(attention_head_dim, int):
|
348 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
349 |
+
|
350 |
+
if isinstance(num_attention_heads, int):
|
351 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
352 |
+
|
353 |
+
# down
|
354 |
+
output_channel = block_out_channels[0]
|
355 |
+
|
356 |
+
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
357 |
+
controlnet_block = zero_module(controlnet_block)
|
358 |
+
self.controlnet_down_blocks.append(controlnet_block)
|
359 |
+
|
360 |
+
for i, down_block_type in enumerate(down_block_types):
|
361 |
+
input_channel = output_channel
|
362 |
+
output_channel = block_out_channels[i]
|
363 |
+
is_final_block = i == len(block_out_channels) - 1
|
364 |
+
|
365 |
+
down_block = get_down_block(
|
366 |
+
down_block_type,
|
367 |
+
num_layers=layers_per_block,
|
368 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
369 |
+
in_channels=input_channel,
|
370 |
+
out_channels=output_channel,
|
371 |
+
temb_channels=time_embed_dim,
|
372 |
+
add_downsample=not is_final_block,
|
373 |
+
resnet_eps=norm_eps,
|
374 |
+
resnet_act_fn=act_fn,
|
375 |
+
resnet_groups=norm_num_groups,
|
376 |
+
cross_attention_dim=cross_attention_dim,
|
377 |
+
num_attention_heads=num_attention_heads[i],
|
378 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
379 |
+
downsample_padding=downsample_padding,
|
380 |
+
use_linear_projection=use_linear_projection,
|
381 |
+
only_cross_attention=only_cross_attention[i],
|
382 |
+
upcast_attention=upcast_attention,
|
383 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
384 |
+
use_image_cross_attention=use_image_cross_attention,
|
385 |
+
)
|
386 |
+
self.down_blocks.append(down_block)
|
387 |
+
|
388 |
+
for _ in range(layers_per_block):
|
389 |
+
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
390 |
+
controlnet_block = zero_module(controlnet_block)
|
391 |
+
self.controlnet_down_blocks.append(controlnet_block)
|
392 |
+
|
393 |
+
if not is_final_block:
|
394 |
+
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
395 |
+
controlnet_block = zero_module(controlnet_block)
|
396 |
+
self.controlnet_down_blocks.append(controlnet_block)
|
397 |
+
|
398 |
+
# mid
|
399 |
+
mid_block_channel = block_out_channels[-1]
|
400 |
+
|
401 |
+
controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
|
402 |
+
controlnet_block = zero_module(controlnet_block)
|
403 |
+
self.controlnet_mid_block = controlnet_block
|
404 |
+
|
405 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
406 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
407 |
+
in_channels=mid_block_channel,
|
408 |
+
temb_channels=time_embed_dim,
|
409 |
+
resnet_eps=norm_eps,
|
410 |
+
resnet_act_fn=act_fn,
|
411 |
+
output_scale_factor=mid_block_scale_factor,
|
412 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
413 |
+
cross_attention_dim=cross_attention_dim,
|
414 |
+
num_attention_heads=num_attention_heads[-1],
|
415 |
+
resnet_groups=norm_num_groups,
|
416 |
+
use_linear_projection=use_linear_projection,
|
417 |
+
upcast_attention=upcast_attention,
|
418 |
+
use_image_cross_attention=use_image_cross_attention,
|
419 |
+
)
|
420 |
+
|
421 |
+
@classmethod
|
422 |
+
def from_unet(
|
423 |
+
cls,
|
424 |
+
unet: UNet2DConditionModel,
|
425 |
+
controlnet_conditioning_channel_order: str = "rgb",
|
426 |
+
conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256),
|
427 |
+
load_weights_from_unet: bool = True,
|
428 |
+
use_image_cross_attention: bool = False,
|
429 |
+
):
|
430 |
+
r"""
|
431 |
+
Instantiate a [`ControlNetModel`] from [`UNet2DConditionModel`].
|
432 |
+
|
433 |
+
Parameters:
|
434 |
+
unet (`UNet2DConditionModel`):
|
435 |
+
The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied
|
436 |
+
where applicable.
|
437 |
+
"""
|
438 |
+
transformer_layers_per_block = (
|
439 |
+
unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
|
440 |
+
)
|
441 |
+
encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
|
442 |
+
encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None
|
443 |
+
addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None
|
444 |
+
addition_time_embed_dim = (
|
445 |
+
unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None
|
446 |
+
)
|
447 |
+
|
448 |
+
controlnet = cls(
|
449 |
+
encoder_hid_dim=encoder_hid_dim,
|
450 |
+
encoder_hid_dim_type=encoder_hid_dim_type,
|
451 |
+
addition_embed_type=addition_embed_type,
|
452 |
+
addition_time_embed_dim=addition_time_embed_dim,
|
453 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
454 |
+
in_channels=unet.config.in_channels,
|
455 |
+
flip_sin_to_cos=unet.config.flip_sin_to_cos,
|
456 |
+
freq_shift=unet.config.freq_shift,
|
457 |
+
down_block_types=unet.config.down_block_types,
|
458 |
+
only_cross_attention=unet.config.only_cross_attention,
|
459 |
+
block_out_channels=unet.config.block_out_channels,
|
460 |
+
layers_per_block=unet.config.layers_per_block,
|
461 |
+
downsample_padding=unet.config.downsample_padding,
|
462 |
+
mid_block_scale_factor=unet.config.mid_block_scale_factor,
|
463 |
+
act_fn=unet.config.act_fn,
|
464 |
+
norm_num_groups=unet.config.norm_num_groups,
|
465 |
+
norm_eps=unet.config.norm_eps,
|
466 |
+
cross_attention_dim=unet.config.cross_attention_dim,
|
467 |
+
attention_head_dim=unet.config.attention_head_dim,
|
468 |
+
num_attention_heads=unet.config.num_attention_heads,
|
469 |
+
use_linear_projection=unet.config.use_linear_projection,
|
470 |
+
class_embed_type=unet.config.class_embed_type,
|
471 |
+
num_class_embeds=unet.config.num_class_embeds,
|
472 |
+
upcast_attention=unet.config.upcast_attention,
|
473 |
+
resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
|
474 |
+
projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
|
475 |
+
controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
|
476 |
+
conditioning_embedding_out_channels=conditioning_embedding_out_channels,
|
477 |
+
use_image_cross_attention=use_image_cross_attention,
|
478 |
+
)
|
479 |
+
|
480 |
+
if load_weights_from_unet:
|
481 |
+
controlnet.conv_in.load_state_dict(unet.conv_in.state_dict())
|
482 |
+
controlnet.time_proj.load_state_dict(unet.time_proj.state_dict())
|
483 |
+
controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
|
484 |
+
|
485 |
+
if controlnet.class_embedding:
|
486 |
+
controlnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())
|
487 |
+
|
488 |
+
controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict(), strict=False)
|
489 |
+
controlnet.mid_block.load_state_dict(unet.mid_block.state_dict(), strict=False)
|
490 |
+
|
491 |
+
return controlnet
|
492 |
+
|
493 |
+
@property
|
494 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
|
495 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
496 |
+
r"""
|
497 |
+
Returns:
|
498 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
499 |
+
indexed by its weight name.
|
500 |
+
"""
|
501 |
+
# set recursively
|
502 |
+
processors = {}
|
503 |
+
|
504 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
505 |
+
if hasattr(module, "get_processor"):
|
506 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
507 |
+
|
508 |
+
for sub_name, child in module.named_children():
|
509 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
510 |
+
|
511 |
+
return processors
|
512 |
+
|
513 |
+
for name, module in self.named_children():
|
514 |
+
fn_recursive_add_processors(name, module, processors)
|
515 |
+
|
516 |
+
return processors
|
517 |
+
|
518 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
519 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
520 |
+
r"""
|
521 |
+
Sets the attention processor to use to compute attention.
|
522 |
+
|
523 |
+
Parameters:
|
524 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
525 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
526 |
+
for **all** `Attention` layers.
|
527 |
+
|
528 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
529 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
530 |
+
|
531 |
+
"""
|
532 |
+
count = len(self.attn_processors.keys())
|
533 |
+
|
534 |
+
if isinstance(processor, dict) and len(processor) != count:
|
535 |
+
raise ValueError(
|
536 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
537 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
538 |
+
)
|
539 |
+
|
540 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
541 |
+
if hasattr(module, "set_processor"):
|
542 |
+
if not isinstance(processor, dict):
|
543 |
+
module.set_processor(processor)
|
544 |
+
else:
|
545 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
546 |
+
|
547 |
+
for sub_name, child in module.named_children():
|
548 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
549 |
+
|
550 |
+
for name, module in self.named_children():
|
551 |
+
fn_recursive_attn_processor(name, module, processor)
|
552 |
+
|
553 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
|
554 |
+
def set_default_attn_processor(self):
|
555 |
+
"""
|
556 |
+
Disables custom attention processors and sets the default attention implementation.
|
557 |
+
"""
|
558 |
+
self.set_attn_processor(AttnProcessor())
|
559 |
+
|
560 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attention_slice
|
561 |
+
def set_attention_slice(self, slice_size):
|
562 |
+
r"""
|
563 |
+
Enable sliced attention computation.
|
564 |
+
|
565 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
566 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
567 |
+
|
568 |
+
Args:
|
569 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
570 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
571 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
572 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
573 |
+
must be a multiple of `slice_size`.
|
574 |
+
"""
|
575 |
+
sliceable_head_dims = []
|
576 |
+
|
577 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
578 |
+
if hasattr(module, "set_attention_slice"):
|
579 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
580 |
+
|
581 |
+
for child in module.children():
|
582 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
583 |
+
|
584 |
+
# retrieve number of attention layers
|
585 |
+
for module in self.children():
|
586 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
587 |
+
|
588 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
589 |
+
|
590 |
+
if slice_size == "auto":
|
591 |
+
# half the attention head size is usually a good trade-off between
|
592 |
+
# speed and memory
|
593 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
594 |
+
elif slice_size == "max":
|
595 |
+
# make smallest slice possible
|
596 |
+
slice_size = num_sliceable_layers * [1]
|
597 |
+
|
598 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
599 |
+
|
600 |
+
if len(slice_size) != len(sliceable_head_dims):
|
601 |
+
raise ValueError(
|
602 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
603 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
604 |
+
)
|
605 |
+
|
606 |
+
for i in range(len(slice_size)):
|
607 |
+
size = slice_size[i]
|
608 |
+
dim = sliceable_head_dims[i]
|
609 |
+
if size is not None and size > dim:
|
610 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
611 |
+
|
612 |
+
# Recursively walk through all the children.
|
613 |
+
# Any children which exposes the set_attention_slice method
|
614 |
+
# gets the message
|
615 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
616 |
+
if hasattr(module, "set_attention_slice"):
|
617 |
+
module.set_attention_slice(slice_size.pop())
|
618 |
+
|
619 |
+
for child in module.children():
|
620 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
621 |
+
|
622 |
+
reversed_slice_size = list(reversed(slice_size))
|
623 |
+
for module in self.children():
|
624 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
625 |
+
|
626 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
627 |
+
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
|
628 |
+
module.gradient_checkpointing = value
|
629 |
+
|
630 |
+
def forward(
|
631 |
+
self,
|
632 |
+
sample: torch.FloatTensor,
|
633 |
+
timestep: Union[torch.Tensor, float, int],
|
634 |
+
encoder_hidden_states: torch.Tensor,
|
635 |
+
controlnet_cond: torch.FloatTensor,
|
636 |
+
conditioning_scale: float = 1.0,
|
637 |
+
class_labels: Optional[torch.Tensor] = None,
|
638 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
639 |
+
attention_mask: Optional[torch.Tensor] = None,
|
640 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
641 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
642 |
+
guess_mode: bool = False,
|
643 |
+
return_dict: bool = True,
|
644 |
+
image_encoder_hidden_states: torch.Tensor = None,
|
645 |
+
vae_encode_condition_hidden_states: torch.Tensor = None,
|
646 |
+
) -> Union[ControlNetOutput, Tuple]:
|
647 |
+
"""
|
648 |
+
The [`ControlNetModel`] forward method.
|
649 |
+
|
650 |
+
Args:
|
651 |
+
sample (`torch.FloatTensor`):
|
652 |
+
The noisy input tensor.
|
653 |
+
timestep (`Union[torch.Tensor, float, int]`):
|
654 |
+
The number of timesteps to denoise an input.
|
655 |
+
encoder_hidden_states (`torch.Tensor`):
|
656 |
+
The encoder hidden states.
|
657 |
+
controlnet_cond (`torch.FloatTensor`):
|
658 |
+
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
659 |
+
conditioning_scale (`float`, defaults to `1.0`):
|
660 |
+
The scale factor for ControlNet outputs.
|
661 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
662 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
663 |
+
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
|
664 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
665 |
+
added_cond_kwargs (`dict`):
|
666 |
+
Additional conditions for the Stable Diffusion XL UNet.
|
667 |
+
cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
|
668 |
+
A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
|
669 |
+
guess_mode (`bool`, defaults to `False`):
|
670 |
+
In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
|
671 |
+
you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
|
672 |
+
return_dict (`bool`, defaults to `True`):
|
673 |
+
Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
|
674 |
+
|
675 |
+
Returns:
|
676 |
+
[`~models.controlnet.ControlNetOutput`] **or** `tuple`:
|
677 |
+
If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is
|
678 |
+
returned where the first element is the sample tensor.
|
679 |
+
"""
|
680 |
+
# check channel order
|
681 |
+
channel_order = self.config.controlnet_conditioning_channel_order
|
682 |
+
|
683 |
+
if channel_order == "rgb":
|
684 |
+
# in rgb order by default
|
685 |
+
...
|
686 |
+
elif channel_order == "bgr":
|
687 |
+
controlnet_cond = torch.flip(controlnet_cond, dims=[1])
|
688 |
+
else:
|
689 |
+
raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")
|
690 |
+
|
691 |
+
# prepare attention_mask
|
692 |
+
if attention_mask is not None:
|
693 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
694 |
+
attention_mask = attention_mask.unsqueeze(1)
|
695 |
+
|
696 |
+
# 1. time
|
697 |
+
timesteps = timestep
|
698 |
+
if not torch.is_tensor(timesteps):
|
699 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
700 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
701 |
+
is_mps = sample.device.type == "mps"
|
702 |
+
if isinstance(timestep, float):
|
703 |
+
dtype = torch.float32 if is_mps else torch.float64
|
704 |
+
else:
|
705 |
+
dtype = torch.int32 if is_mps else torch.int64
|
706 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
707 |
+
elif len(timesteps.shape) == 0:
|
708 |
+
timesteps = timesteps[None].to(sample.device)
|
709 |
+
|
710 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
711 |
+
timesteps = timesteps.expand(sample.shape[0])
|
712 |
+
|
713 |
+
t_emb = self.time_proj(timesteps)
|
714 |
+
|
715 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
716 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
717 |
+
# there might be better ways to encapsulate this.
|
718 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
719 |
+
|
720 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
721 |
+
aug_emb = None
|
722 |
+
|
723 |
+
if self.class_embedding is not None:
|
724 |
+
if class_labels is None:
|
725 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
726 |
+
|
727 |
+
if self.config.class_embed_type == "timestep":
|
728 |
+
class_labels = self.time_proj(class_labels)
|
729 |
+
|
730 |
+
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
731 |
+
emb = emb + class_emb
|
732 |
+
|
733 |
+
if self.config.addition_embed_type is not None:
|
734 |
+
if self.config.addition_embed_type == "text":
|
735 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
736 |
+
|
737 |
+
elif self.config.addition_embed_type == "text_time":
|
738 |
+
if "text_embeds" not in added_cond_kwargs:
|
739 |
+
raise ValueError(
|
740 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
741 |
+
)
|
742 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
743 |
+
if "time_ids" not in added_cond_kwargs:
|
744 |
+
raise ValueError(
|
745 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
746 |
+
)
|
747 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
748 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
749 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
750 |
+
|
751 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
752 |
+
add_embeds = add_embeds.to(emb.dtype)
|
753 |
+
aug_emb = self.add_embedding(add_embeds)
|
754 |
+
|
755 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
756 |
+
|
757 |
+
# 2. pre-process
|
758 |
+
sample = self.conv_in(sample)
|
759 |
+
controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
|
760 |
+
sample = sample + controlnet_cond
|
761 |
+
|
762 |
+
# 3. down
|
763 |
+
down_block_res_samples = (sample,)
|
764 |
+
for downsample_block in self.down_blocks:
|
765 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
766 |
+
sample, res_samples = downsample_block(
|
767 |
+
hidden_states=sample,
|
768 |
+
temb=emb,
|
769 |
+
encoder_hidden_states=encoder_hidden_states,
|
770 |
+
attention_mask=attention_mask,
|
771 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
772 |
+
image_encoder_hidden_states=image_encoder_hidden_states,
|
773 |
+
)
|
774 |
+
else:
|
775 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
776 |
+
|
777 |
+
down_block_res_samples += res_samples
|
778 |
+
|
779 |
+
# 4. mid
|
780 |
+
if self.mid_block is not None:
|
781 |
+
sample = self.mid_block(
|
782 |
+
sample,
|
783 |
+
emb,
|
784 |
+
encoder_hidden_states=encoder_hidden_states,
|
785 |
+
attention_mask=attention_mask,
|
786 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
787 |
+
image_encoder_hidden_states=image_encoder_hidden_states,
|
788 |
+
)
|
789 |
+
|
790 |
+
# 5. Control net blocks
|
791 |
+
|
792 |
+
controlnet_down_block_res_samples = ()
|
793 |
+
|
794 |
+
for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
|
795 |
+
down_block_res_sample = controlnet_block(down_block_res_sample)
|
796 |
+
controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,)
|
797 |
+
|
798 |
+
down_block_res_samples = controlnet_down_block_res_samples
|
799 |
+
|
800 |
+
mid_block_res_sample = self.controlnet_mid_block(sample)
|
801 |
+
|
802 |
+
# 6. scaling
|
803 |
+
if guess_mode and not self.config.global_pool_conditions:
|
804 |
+
scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) # 0.1 to 1.0
|
805 |
+
|
806 |
+
scales = scales * conditioning_scale
|
807 |
+
down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)]
|
808 |
+
mid_block_res_sample = mid_block_res_sample * scales[-1] # last one
|
809 |
+
else:
|
810 |
+
down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples]
|
811 |
+
mid_block_res_sample = mid_block_res_sample * conditioning_scale
|
812 |
+
|
813 |
+
if self.config.global_pool_conditions:
|
814 |
+
down_block_res_samples = [
|
815 |
+
torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples
|
816 |
+
]
|
817 |
+
mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True)
|
818 |
+
|
819 |
+
if not return_dict:
|
820 |
+
return (down_block_res_samples, mid_block_res_sample)
|
821 |
+
|
822 |
+
return ControlNetOutput(
|
823 |
+
down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
|
824 |
+
)
|
825 |
+
|
826 |
+
|
827 |
+
def zero_module(module):
|
828 |
+
for p in module.parameters():
|
829 |
+
nn.init.zeros_(p)
|
830 |
+
return module
|
831 |
+
|
832 |
+
|
models/unet_2d_blocks.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
models/unet_2d_condition.py
ADDED
@@ -0,0 +1,1071 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
import torch.utils.checkpoint
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
23 |
+
from diffusers.utils import BaseOutput, logging
|
24 |
+
from diffusers.models.activations import get_activation
|
25 |
+
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
|
26 |
+
from diffusers.models.embeddings import (
|
27 |
+
GaussianFourierProjection,
|
28 |
+
ImageHintTimeEmbedding,
|
29 |
+
ImageProjection,
|
30 |
+
ImageTimeEmbedding,
|
31 |
+
PositionNet,
|
32 |
+
TextImageProjection,
|
33 |
+
TextImageTimeEmbedding,
|
34 |
+
TextTimeEmbedding,
|
35 |
+
TimestepEmbedding,
|
36 |
+
Timesteps,
|
37 |
+
)
|
38 |
+
from diffusers.models.modeling_utils import ModelMixin
|
39 |
+
from .unet_2d_blocks import (
|
40 |
+
UNetMidBlock2DCrossAttn,
|
41 |
+
UNetMidBlock2DSimpleCrossAttn,
|
42 |
+
get_down_block,
|
43 |
+
get_up_block,
|
44 |
+
)
|
45 |
+
|
46 |
+
import os, json
|
47 |
+
|
48 |
+
|
49 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
50 |
+
|
51 |
+
|
52 |
+
@dataclass
|
53 |
+
class UNet2DConditionOutput(BaseOutput):
|
54 |
+
"""
|
55 |
+
The output of [`UNet2DConditionModel`].
|
56 |
+
|
57 |
+
Args:
|
58 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
59 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
60 |
+
"""
|
61 |
+
|
62 |
+
sample: torch.FloatTensor = None
|
63 |
+
|
64 |
+
|
65 |
+
class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
66 |
+
r"""
|
67 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
68 |
+
shaped output.
|
69 |
+
|
70 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
71 |
+
for all models (such as downloading or saving).
|
72 |
+
|
73 |
+
Parameters:
|
74 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
75 |
+
Height and width of input/output sample.
|
76 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
77 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
78 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
79 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
80 |
+
Whether to flip the sin to cos in the time embedding.
|
81 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
82 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
83 |
+
The tuple of downsample blocks to use.
|
84 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
85 |
+
Block type for middle of UNet, it can be either `UNetMidBlock2DCrossAttn` or
|
86 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
87 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
88 |
+
The tuple of upsample blocks to use.
|
89 |
+
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
90 |
+
Whether to include self-attention in the basic transformer blocks, see
|
91 |
+
[`~models.attention.BasicTransformerBlock`].
|
92 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
93 |
+
The tuple of output channels for each block.
|
94 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
95 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
96 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
97 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
98 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
99 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
100 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
101 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
102 |
+
The dimension of the cross attention features.
|
103 |
+
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
104 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
105 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
106 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
107 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
108 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
109 |
+
dimension to `cross_attention_dim`.
|
110 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
111 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
112 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
113 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
114 |
+
num_attention_heads (`int`, *optional*):
|
115 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
116 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
117 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
118 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
119 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
120 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
121 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
122 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
123 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
124 |
+
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
125 |
+
Dimension for the timestep embeddings.
|
126 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
127 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
128 |
+
class conditioning with `class_embed_type` equal to `None`.
|
129 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
130 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
131 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
132 |
+
An optional override for the dimension of the projected time embedding.
|
133 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
134 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
135 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
136 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
137 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
138 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
139 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
140 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
|
141 |
+
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
|
142 |
+
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
|
143 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
144 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
145 |
+
embeddings with the class embeddings.
|
146 |
+
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
147 |
+
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
148 |
+
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
149 |
+
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
150 |
+
otherwise.
|
151 |
+
"""
|
152 |
+
|
153 |
+
_supports_gradient_checkpointing = True
|
154 |
+
|
155 |
+
@register_to_config
|
156 |
+
def __init__(
|
157 |
+
self,
|
158 |
+
sample_size: Optional[int] = None,
|
159 |
+
in_channels: int = 4,
|
160 |
+
out_channels: int = 4,
|
161 |
+
center_input_sample: bool = False,
|
162 |
+
flip_sin_to_cos: bool = True,
|
163 |
+
freq_shift: int = 0,
|
164 |
+
down_block_types: Tuple[str] = (
|
165 |
+
"CrossAttnDownBlock2D",
|
166 |
+
"CrossAttnDownBlock2D",
|
167 |
+
"CrossAttnDownBlock2D",
|
168 |
+
"DownBlock2D",
|
169 |
+
),
|
170 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
171 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
172 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
173 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
174 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
175 |
+
downsample_padding: int = 1,
|
176 |
+
mid_block_scale_factor: float = 1,
|
177 |
+
act_fn: str = "silu",
|
178 |
+
norm_num_groups: Optional[int] = 32,
|
179 |
+
norm_eps: float = 1e-5,
|
180 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
181 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
182 |
+
encoder_hid_dim: Optional[int] = None,
|
183 |
+
encoder_hid_dim_type: Optional[str] = None,
|
184 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
185 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
186 |
+
dual_cross_attention: bool = False,
|
187 |
+
use_linear_projection: bool = False,
|
188 |
+
class_embed_type: Optional[str] = None,
|
189 |
+
addition_embed_type: Optional[str] = None,
|
190 |
+
addition_time_embed_dim: Optional[int] = None,
|
191 |
+
num_class_embeds: Optional[int] = None,
|
192 |
+
upcast_attention: bool = False,
|
193 |
+
resnet_time_scale_shift: str = "default",
|
194 |
+
resnet_skip_time_act: bool = False,
|
195 |
+
resnet_out_scale_factor: int = 1.0,
|
196 |
+
time_embedding_type: str = "positional",
|
197 |
+
time_embedding_dim: Optional[int] = None,
|
198 |
+
time_embedding_act_fn: Optional[str] = None,
|
199 |
+
timestep_post_act: Optional[str] = None,
|
200 |
+
time_cond_proj_dim: Optional[int] = None,
|
201 |
+
conv_in_kernel: int = 3,
|
202 |
+
conv_out_kernel: int = 3,
|
203 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
204 |
+
attention_type: str = "default",
|
205 |
+
class_embeddings_concat: bool = False,
|
206 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
207 |
+
cross_attention_norm: Optional[str] = None,
|
208 |
+
addition_embed_type_num_heads=64,
|
209 |
+
use_image_cross_attention=False,
|
210 |
+
):
|
211 |
+
super().__init__()
|
212 |
+
|
213 |
+
self.sample_size = sample_size
|
214 |
+
|
215 |
+
if num_attention_heads is not None:
|
216 |
+
raise ValueError(
|
217 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
218 |
+
)
|
219 |
+
|
220 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
221 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
222 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
223 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
224 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
225 |
+
# which is why we correct for the naming here.
|
226 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
227 |
+
|
228 |
+
# Check inputs
|
229 |
+
if len(down_block_types) != len(up_block_types):
|
230 |
+
raise ValueError(
|
231 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
232 |
+
)
|
233 |
+
|
234 |
+
if len(block_out_channels) != len(down_block_types):
|
235 |
+
raise ValueError(
|
236 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
237 |
+
)
|
238 |
+
|
239 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
240 |
+
raise ValueError(
|
241 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
242 |
+
)
|
243 |
+
|
244 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
245 |
+
raise ValueError(
|
246 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
247 |
+
)
|
248 |
+
|
249 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
250 |
+
raise ValueError(
|
251 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
252 |
+
)
|
253 |
+
|
254 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
255 |
+
raise ValueError(
|
256 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
257 |
+
)
|
258 |
+
|
259 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
260 |
+
raise ValueError(
|
261 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
262 |
+
)
|
263 |
+
|
264 |
+
# input
|
265 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
266 |
+
self.conv_in = nn.Conv2d(
|
267 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
268 |
+
)
|
269 |
+
|
270 |
+
# time
|
271 |
+
if time_embedding_type == "fourier":
|
272 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
273 |
+
if time_embed_dim % 2 != 0:
|
274 |
+
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
275 |
+
self.time_proj = GaussianFourierProjection(
|
276 |
+
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
277 |
+
)
|
278 |
+
timestep_input_dim = time_embed_dim
|
279 |
+
elif time_embedding_type == "positional":
|
280 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
281 |
+
|
282 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
283 |
+
timestep_input_dim = block_out_channels[0]
|
284 |
+
else:
|
285 |
+
raise ValueError(
|
286 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
287 |
+
)
|
288 |
+
|
289 |
+
self.time_embedding = TimestepEmbedding(
|
290 |
+
timestep_input_dim,
|
291 |
+
time_embed_dim,
|
292 |
+
act_fn=act_fn,
|
293 |
+
post_act_fn=timestep_post_act,
|
294 |
+
cond_proj_dim=time_cond_proj_dim,
|
295 |
+
)
|
296 |
+
|
297 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
298 |
+
encoder_hid_dim_type = "text_proj"
|
299 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
300 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
301 |
+
|
302 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
303 |
+
raise ValueError(
|
304 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
305 |
+
)
|
306 |
+
|
307 |
+
if encoder_hid_dim_type == "text_proj":
|
308 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
309 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
310 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
311 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
312 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
313 |
+
self.encoder_hid_proj = TextImageProjection(
|
314 |
+
text_embed_dim=encoder_hid_dim,
|
315 |
+
image_embed_dim=cross_attention_dim,
|
316 |
+
cross_attention_dim=cross_attention_dim,
|
317 |
+
)
|
318 |
+
elif encoder_hid_dim_type == "image_proj":
|
319 |
+
# Kandinsky 2.2
|
320 |
+
self.encoder_hid_proj = ImageProjection(
|
321 |
+
image_embed_dim=encoder_hid_dim,
|
322 |
+
cross_attention_dim=cross_attention_dim,
|
323 |
+
)
|
324 |
+
elif encoder_hid_dim_type is not None:
|
325 |
+
raise ValueError(
|
326 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
327 |
+
)
|
328 |
+
else:
|
329 |
+
self.encoder_hid_proj = None
|
330 |
+
|
331 |
+
# class embedding
|
332 |
+
if class_embed_type is None and num_class_embeds is not None:
|
333 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
334 |
+
elif class_embed_type == "timestep":
|
335 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
336 |
+
elif class_embed_type == "identity":
|
337 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
338 |
+
elif class_embed_type == "projection":
|
339 |
+
if projection_class_embeddings_input_dim is None:
|
340 |
+
raise ValueError(
|
341 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
342 |
+
)
|
343 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
344 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
345 |
+
# 2. it projects from an arbitrary input dimension.
|
346 |
+
#
|
347 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
348 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
349 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
350 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
351 |
+
elif class_embed_type == "simple_projection":
|
352 |
+
if projection_class_embeddings_input_dim is None:
|
353 |
+
raise ValueError(
|
354 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
355 |
+
)
|
356 |
+
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
357 |
+
else:
|
358 |
+
self.class_embedding = None
|
359 |
+
|
360 |
+
if addition_embed_type == "text":
|
361 |
+
if encoder_hid_dim is not None:
|
362 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
363 |
+
else:
|
364 |
+
text_time_embedding_from_dim = cross_attention_dim
|
365 |
+
|
366 |
+
self.add_embedding = TextTimeEmbedding(
|
367 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
368 |
+
)
|
369 |
+
elif addition_embed_type == "text_image":
|
370 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
371 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
372 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
373 |
+
self.add_embedding = TextImageTimeEmbedding(
|
374 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
375 |
+
)
|
376 |
+
elif addition_embed_type == "text_time":
|
377 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
378 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
379 |
+
elif addition_embed_type == "image":
|
380 |
+
# Kandinsky 2.2
|
381 |
+
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
382 |
+
elif addition_embed_type == "image_hint":
|
383 |
+
# Kandinsky 2.2 ControlNet
|
384 |
+
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
385 |
+
elif addition_embed_type is not None:
|
386 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
387 |
+
|
388 |
+
if time_embedding_act_fn is None:
|
389 |
+
self.time_embed_act = None
|
390 |
+
else:
|
391 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
392 |
+
|
393 |
+
self.down_blocks = nn.ModuleList([])
|
394 |
+
self.up_blocks = nn.ModuleList([])
|
395 |
+
|
396 |
+
if isinstance(only_cross_attention, bool):
|
397 |
+
if mid_block_only_cross_attention is None:
|
398 |
+
mid_block_only_cross_attention = only_cross_attention
|
399 |
+
|
400 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
401 |
+
|
402 |
+
if mid_block_only_cross_attention is None:
|
403 |
+
mid_block_only_cross_attention = False
|
404 |
+
|
405 |
+
if isinstance(num_attention_heads, int):
|
406 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
407 |
+
|
408 |
+
if isinstance(attention_head_dim, int):
|
409 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
410 |
+
|
411 |
+
if isinstance(cross_attention_dim, int):
|
412 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
413 |
+
|
414 |
+
if isinstance(layers_per_block, int):
|
415 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
416 |
+
|
417 |
+
if isinstance(transformer_layers_per_block, int):
|
418 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
419 |
+
|
420 |
+
if class_embeddings_concat:
|
421 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
422 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
423 |
+
# regular time embeddings
|
424 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
425 |
+
else:
|
426 |
+
blocks_time_embed_dim = time_embed_dim
|
427 |
+
|
428 |
+
# down
|
429 |
+
output_channel = block_out_channels[0]
|
430 |
+
for i, down_block_type in enumerate(down_block_types):
|
431 |
+
input_channel = output_channel
|
432 |
+
output_channel = block_out_channels[i]
|
433 |
+
is_final_block = i == len(block_out_channels) - 1
|
434 |
+
|
435 |
+
down_block = get_down_block(
|
436 |
+
down_block_type,
|
437 |
+
num_layers=layers_per_block[i],
|
438 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
439 |
+
in_channels=input_channel,
|
440 |
+
out_channels=output_channel,
|
441 |
+
temb_channels=blocks_time_embed_dim,
|
442 |
+
add_downsample=not is_final_block,
|
443 |
+
resnet_eps=norm_eps,
|
444 |
+
resnet_act_fn=act_fn,
|
445 |
+
resnet_groups=norm_num_groups,
|
446 |
+
cross_attention_dim=cross_attention_dim[i],
|
447 |
+
num_attention_heads=num_attention_heads[i],
|
448 |
+
downsample_padding=downsample_padding,
|
449 |
+
dual_cross_attention=dual_cross_attention,
|
450 |
+
use_linear_projection=use_linear_projection,
|
451 |
+
only_cross_attention=only_cross_attention[i],
|
452 |
+
upcast_attention=upcast_attention,
|
453 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
454 |
+
attention_type=attention_type,
|
455 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
456 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
457 |
+
cross_attention_norm=cross_attention_norm,
|
458 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
459 |
+
use_image_cross_attention=use_image_cross_attention,
|
460 |
+
)
|
461 |
+
self.down_blocks.append(down_block)
|
462 |
+
|
463 |
+
# mid
|
464 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
465 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
466 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
467 |
+
in_channels=block_out_channels[-1],
|
468 |
+
temb_channels=blocks_time_embed_dim,
|
469 |
+
resnet_eps=norm_eps,
|
470 |
+
resnet_act_fn=act_fn,
|
471 |
+
output_scale_factor=mid_block_scale_factor,
|
472 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
473 |
+
cross_attention_dim=cross_attention_dim[-1],
|
474 |
+
num_attention_heads=num_attention_heads[-1],
|
475 |
+
resnet_groups=norm_num_groups,
|
476 |
+
dual_cross_attention=dual_cross_attention,
|
477 |
+
use_linear_projection=use_linear_projection,
|
478 |
+
upcast_attention=upcast_attention,
|
479 |
+
attention_type=attention_type,
|
480 |
+
use_image_cross_attention=use_image_cross_attention,
|
481 |
+
)
|
482 |
+
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
|
483 |
+
self.mid_block = UNetMidBlock2DSimpleCrossAttn(
|
484 |
+
in_channels=block_out_channels[-1],
|
485 |
+
temb_channels=blocks_time_embed_dim,
|
486 |
+
resnet_eps=norm_eps,
|
487 |
+
resnet_act_fn=act_fn,
|
488 |
+
output_scale_factor=mid_block_scale_factor,
|
489 |
+
cross_attention_dim=cross_attention_dim[-1],
|
490 |
+
attention_head_dim=attention_head_dim[-1],
|
491 |
+
resnet_groups=norm_num_groups,
|
492 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
493 |
+
skip_time_act=resnet_skip_time_act,
|
494 |
+
only_cross_attention=mid_block_only_cross_attention,
|
495 |
+
cross_attention_norm=cross_attention_norm,
|
496 |
+
)
|
497 |
+
elif mid_block_type is None:
|
498 |
+
self.mid_block = None
|
499 |
+
else:
|
500 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
501 |
+
|
502 |
+
# count how many layers upsample the images
|
503 |
+
self.num_upsamplers = 0
|
504 |
+
|
505 |
+
# up
|
506 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
507 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
508 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
509 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
510 |
+
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
|
511 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
512 |
+
|
513 |
+
output_channel = reversed_block_out_channels[0]
|
514 |
+
for i, up_block_type in enumerate(up_block_types):
|
515 |
+
is_final_block = i == len(block_out_channels) - 1
|
516 |
+
|
517 |
+
prev_output_channel = output_channel
|
518 |
+
output_channel = reversed_block_out_channels[i]
|
519 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
520 |
+
|
521 |
+
# add upsample block for all BUT final layer
|
522 |
+
if not is_final_block:
|
523 |
+
add_upsample = True
|
524 |
+
self.num_upsamplers += 1
|
525 |
+
else:
|
526 |
+
add_upsample = False
|
527 |
+
|
528 |
+
up_block = get_up_block(
|
529 |
+
up_block_type,
|
530 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
531 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
532 |
+
in_channels=input_channel,
|
533 |
+
out_channels=output_channel,
|
534 |
+
prev_output_channel=prev_output_channel,
|
535 |
+
temb_channels=blocks_time_embed_dim,
|
536 |
+
add_upsample=add_upsample,
|
537 |
+
resnet_eps=norm_eps,
|
538 |
+
resnet_act_fn=act_fn,
|
539 |
+
resnet_groups=norm_num_groups,
|
540 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
541 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
542 |
+
dual_cross_attention=dual_cross_attention,
|
543 |
+
use_linear_projection=use_linear_projection,
|
544 |
+
only_cross_attention=only_cross_attention[i],
|
545 |
+
upcast_attention=upcast_attention,
|
546 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
547 |
+
attention_type=attention_type,
|
548 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
549 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
550 |
+
cross_attention_norm=cross_attention_norm,
|
551 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
552 |
+
use_image_cross_attention=use_image_cross_attention,
|
553 |
+
)
|
554 |
+
self.up_blocks.append(up_block)
|
555 |
+
prev_output_channel = output_channel
|
556 |
+
|
557 |
+
# out
|
558 |
+
if norm_num_groups is not None:
|
559 |
+
self.conv_norm_out = nn.GroupNorm(
|
560 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
561 |
+
)
|
562 |
+
|
563 |
+
self.conv_act = get_activation(act_fn)
|
564 |
+
|
565 |
+
else:
|
566 |
+
self.conv_norm_out = None
|
567 |
+
self.conv_act = None
|
568 |
+
|
569 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
570 |
+
self.conv_out = nn.Conv2d(
|
571 |
+
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
572 |
+
)
|
573 |
+
|
574 |
+
if attention_type == "gated":
|
575 |
+
positive_len = 768
|
576 |
+
if isinstance(cross_attention_dim, int):
|
577 |
+
positive_len = cross_attention_dim
|
578 |
+
elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
|
579 |
+
positive_len = cross_attention_dim[0]
|
580 |
+
self.position_net = PositionNet(positive_len=positive_len, out_dim=cross_attention_dim)
|
581 |
+
|
582 |
+
@property
|
583 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
584 |
+
r"""
|
585 |
+
Returns:
|
586 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
587 |
+
indexed by its weight name.
|
588 |
+
"""
|
589 |
+
# set recursively
|
590 |
+
processors = {}
|
591 |
+
|
592 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
593 |
+
if hasattr(module, "get_processor"):
|
594 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
595 |
+
|
596 |
+
for sub_name, child in module.named_children():
|
597 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
598 |
+
|
599 |
+
return processors
|
600 |
+
|
601 |
+
for name, module in self.named_children():
|
602 |
+
fn_recursive_add_processors(name, module, processors)
|
603 |
+
|
604 |
+
return processors
|
605 |
+
|
606 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
607 |
+
r"""
|
608 |
+
Sets the attention processor to use to compute attention.
|
609 |
+
|
610 |
+
Parameters:
|
611 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
612 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
613 |
+
for **all** `Attention` layers.
|
614 |
+
|
615 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
616 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
617 |
+
|
618 |
+
"""
|
619 |
+
count = len(self.attn_processors.keys())
|
620 |
+
|
621 |
+
if isinstance(processor, dict) and len(processor) != count:
|
622 |
+
raise ValueError(
|
623 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
624 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
625 |
+
)
|
626 |
+
|
627 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
628 |
+
if hasattr(module, "set_processor"):
|
629 |
+
if not isinstance(processor, dict):
|
630 |
+
module.set_processor(processor)
|
631 |
+
else:
|
632 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
633 |
+
|
634 |
+
for sub_name, child in module.named_children():
|
635 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
636 |
+
|
637 |
+
for name, module in self.named_children():
|
638 |
+
fn_recursive_attn_processor(name, module, processor)
|
639 |
+
|
640 |
+
def set_default_attn_processor(self):
|
641 |
+
"""
|
642 |
+
Disables custom attention processors and sets the default attention implementation.
|
643 |
+
"""
|
644 |
+
self.set_attn_processor(AttnProcessor())
|
645 |
+
|
646 |
+
def set_attention_slice(self, slice_size):
|
647 |
+
r"""
|
648 |
+
Enable sliced attention computation.
|
649 |
+
|
650 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
651 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
652 |
+
|
653 |
+
Args:
|
654 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
655 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
656 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
657 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
658 |
+
must be a multiple of `slice_size`.
|
659 |
+
"""
|
660 |
+
sliceable_head_dims = []
|
661 |
+
|
662 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
663 |
+
if hasattr(module, "set_attention_slice"):
|
664 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
665 |
+
|
666 |
+
for child in module.children():
|
667 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
668 |
+
|
669 |
+
# retrieve number of attention layers
|
670 |
+
for module in self.children():
|
671 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
672 |
+
|
673 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
674 |
+
|
675 |
+
if slice_size == "auto":
|
676 |
+
# half the attention head size is usually a good trade-off between
|
677 |
+
# speed and memory
|
678 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
679 |
+
elif slice_size == "max":
|
680 |
+
# make smallest slice possible
|
681 |
+
slice_size = num_sliceable_layers * [1]
|
682 |
+
|
683 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
684 |
+
|
685 |
+
if len(slice_size) != len(sliceable_head_dims):
|
686 |
+
raise ValueError(
|
687 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
688 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
689 |
+
)
|
690 |
+
|
691 |
+
for i in range(len(slice_size)):
|
692 |
+
size = slice_size[i]
|
693 |
+
dim = sliceable_head_dims[i]
|
694 |
+
if size is not None and size > dim:
|
695 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
696 |
+
|
697 |
+
# Recursively walk through all the children.
|
698 |
+
# Any children which exposes the set_attention_slice method
|
699 |
+
# gets the message
|
700 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
701 |
+
if hasattr(module, "set_attention_slice"):
|
702 |
+
module.set_attention_slice(slice_size.pop())
|
703 |
+
|
704 |
+
for child in module.children():
|
705 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
706 |
+
|
707 |
+
reversed_slice_size = list(reversed(slice_size))
|
708 |
+
for module in self.children():
|
709 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
710 |
+
|
711 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
712 |
+
if hasattr(module, "gradient_checkpointing"):
|
713 |
+
module.gradient_checkpointing = value
|
714 |
+
|
715 |
+
def forward(
|
716 |
+
self,
|
717 |
+
sample: torch.FloatTensor,
|
718 |
+
timestep: Union[torch.Tensor, float, int],
|
719 |
+
encoder_hidden_states: torch.Tensor,
|
720 |
+
class_labels: Optional[torch.Tensor] = None,
|
721 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
722 |
+
attention_mask: Optional[torch.Tensor] = None,
|
723 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
724 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
725 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
726 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
727 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
728 |
+
return_dict: bool = True,
|
729 |
+
image_encoder_hidden_states: torch.Tensor = None,
|
730 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
731 |
+
r"""
|
732 |
+
The [`UNet2DConditionModel`] forward method.
|
733 |
+
|
734 |
+
Args:
|
735 |
+
sample (`torch.FloatTensor`):
|
736 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
737 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
738 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
739 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
740 |
+
encoder_attention_mask (`torch.Tensor`):
|
741 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
742 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
743 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
744 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
745 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
746 |
+
tuple.
|
747 |
+
cross_attention_kwargs (`dict`, *optional*):
|
748 |
+
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
749 |
+
added_cond_kwargs: (`dict`, *optional*):
|
750 |
+
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
751 |
+
are passed along to the UNet blocks.
|
752 |
+
|
753 |
+
Returns:
|
754 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
755 |
+
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
756 |
+
a `tuple` is returned where the first element is the sample tensor.
|
757 |
+
"""
|
758 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
759 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
760 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
761 |
+
# on the fly if necessary.
|
762 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
763 |
+
|
764 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
765 |
+
forward_upsample_size = False
|
766 |
+
upsample_size = None
|
767 |
+
|
768 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
769 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
770 |
+
forward_upsample_size = True
|
771 |
+
|
772 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
773 |
+
# expects mask of shape:
|
774 |
+
# [batch, key_tokens]
|
775 |
+
# adds singleton query_tokens dimension:
|
776 |
+
# [batch, 1, key_tokens]
|
777 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
778 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
779 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
780 |
+
if attention_mask is not None:
|
781 |
+
# assume that mask is expressed as:
|
782 |
+
# (1 = keep, 0 = discard)
|
783 |
+
# convert mask into a bias that can be added to attention scores:
|
784 |
+
# (keep = +0, discard = -10000.0)
|
785 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
786 |
+
attention_mask = attention_mask.unsqueeze(1)
|
787 |
+
|
788 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
789 |
+
if encoder_attention_mask is not None:
|
790 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
791 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
792 |
+
|
793 |
+
# 0. center input if necessary
|
794 |
+
if self.config.center_input_sample:
|
795 |
+
sample = 2 * sample - 1.0
|
796 |
+
|
797 |
+
# 1. time
|
798 |
+
timesteps = timestep
|
799 |
+
if not torch.is_tensor(timesteps):
|
800 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
801 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
802 |
+
is_mps = sample.device.type == "mps"
|
803 |
+
if isinstance(timestep, float):
|
804 |
+
dtype = torch.float32 if is_mps else torch.float64
|
805 |
+
else:
|
806 |
+
dtype = torch.int32 if is_mps else torch.int64
|
807 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
808 |
+
elif len(timesteps.shape) == 0:
|
809 |
+
timesteps = timesteps[None].to(sample.device)
|
810 |
+
|
811 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
812 |
+
timesteps = timesteps.expand(sample.shape[0])
|
813 |
+
|
814 |
+
t_emb = self.time_proj(timesteps)
|
815 |
+
|
816 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
817 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
818 |
+
# there might be better ways to encapsulate this.
|
819 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
820 |
+
|
821 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
822 |
+
aug_emb = None
|
823 |
+
|
824 |
+
if self.class_embedding is not None:
|
825 |
+
if class_labels is None:
|
826 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
827 |
+
|
828 |
+
if self.config.class_embed_type == "timestep":
|
829 |
+
class_labels = self.time_proj(class_labels)
|
830 |
+
|
831 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
832 |
+
# there might be better ways to encapsulate this.
|
833 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
834 |
+
|
835 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
836 |
+
|
837 |
+
if self.config.class_embeddings_concat:
|
838 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
839 |
+
else:
|
840 |
+
emb = emb + class_emb
|
841 |
+
|
842 |
+
if self.config.addition_embed_type == "text":
|
843 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
844 |
+
elif self.config.addition_embed_type == "text_image":
|
845 |
+
# Kandinsky 2.1 - style
|
846 |
+
if "image_embeds" not in added_cond_kwargs:
|
847 |
+
raise ValueError(
|
848 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
849 |
+
)
|
850 |
+
|
851 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
852 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
853 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
854 |
+
elif self.config.addition_embed_type == "text_time":
|
855 |
+
# SDXL - style
|
856 |
+
if "text_embeds" not in added_cond_kwargs:
|
857 |
+
raise ValueError(
|
858 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
859 |
+
)
|
860 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
861 |
+
if "time_ids" not in added_cond_kwargs:
|
862 |
+
raise ValueError(
|
863 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
864 |
+
)
|
865 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
866 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
867 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
868 |
+
|
869 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
870 |
+
add_embeds = add_embeds.to(emb.dtype)
|
871 |
+
aug_emb = self.add_embedding(add_embeds)
|
872 |
+
elif self.config.addition_embed_type == "image":
|
873 |
+
# Kandinsky 2.2 - style
|
874 |
+
if "image_embeds" not in added_cond_kwargs:
|
875 |
+
raise ValueError(
|
876 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
877 |
+
)
|
878 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
879 |
+
aug_emb = self.add_embedding(image_embs)
|
880 |
+
elif self.config.addition_embed_type == "image_hint":
|
881 |
+
# Kandinsky 2.2 - style
|
882 |
+
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
883 |
+
raise ValueError(
|
884 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
885 |
+
)
|
886 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
887 |
+
hint = added_cond_kwargs.get("hint")
|
888 |
+
aug_emb, hint = self.add_embedding(image_embs, hint)
|
889 |
+
sample = torch.cat([sample, hint], dim=1)
|
890 |
+
|
891 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
892 |
+
|
893 |
+
if self.time_embed_act is not None:
|
894 |
+
emb = self.time_embed_act(emb)
|
895 |
+
|
896 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
897 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
898 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
899 |
+
# Kadinsky 2.1 - style
|
900 |
+
if "image_embeds" not in added_cond_kwargs:
|
901 |
+
raise ValueError(
|
902 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
903 |
+
)
|
904 |
+
|
905 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
906 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
907 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
908 |
+
# Kandinsky 2.2 - style
|
909 |
+
if "image_embeds" not in added_cond_kwargs:
|
910 |
+
raise ValueError(
|
911 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
912 |
+
)
|
913 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
914 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
915 |
+
# 2. pre-process
|
916 |
+
sample = self.conv_in(sample)
|
917 |
+
|
918 |
+
# 2.5 GLIGEN position net
|
919 |
+
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
|
920 |
+
cross_attention_kwargs = cross_attention_kwargs.copy()
|
921 |
+
gligen_args = cross_attention_kwargs.pop("gligen")
|
922 |
+
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
|
923 |
+
|
924 |
+
# 3. down
|
925 |
+
|
926 |
+
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
927 |
+
is_adapter = mid_block_additional_residual is None and down_block_additional_residuals is not None
|
928 |
+
|
929 |
+
down_block_res_samples = (sample,)
|
930 |
+
for downsample_block in self.down_blocks:
|
931 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
932 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
933 |
+
additional_residuals = {}
|
934 |
+
if is_adapter and len(down_block_additional_residuals) > 0:
|
935 |
+
additional_residuals["additional_residuals"] = down_block_additional_residuals.pop(0)
|
936 |
+
|
937 |
+
sample, res_samples = downsample_block(
|
938 |
+
hidden_states=sample,
|
939 |
+
temb=emb,
|
940 |
+
encoder_hidden_states=encoder_hidden_states,
|
941 |
+
attention_mask=attention_mask,
|
942 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
943 |
+
encoder_attention_mask=encoder_attention_mask,
|
944 |
+
image_encoder_hidden_states=image_encoder_hidden_states,
|
945 |
+
**additional_residuals,
|
946 |
+
)
|
947 |
+
else:
|
948 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
949 |
+
|
950 |
+
if is_adapter and len(down_block_additional_residuals) > 0:
|
951 |
+
sample += down_block_additional_residuals.pop(0)
|
952 |
+
|
953 |
+
down_block_res_samples += res_samples
|
954 |
+
|
955 |
+
if is_controlnet:
|
956 |
+
new_down_block_res_samples = ()
|
957 |
+
|
958 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
959 |
+
down_block_res_samples, down_block_additional_residuals
|
960 |
+
):
|
961 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
962 |
+
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
963 |
+
|
964 |
+
down_block_res_samples = new_down_block_res_samples
|
965 |
+
|
966 |
+
# 4. mid
|
967 |
+
if self.mid_block is not None:
|
968 |
+
sample = self.mid_block(
|
969 |
+
sample,
|
970 |
+
emb,
|
971 |
+
encoder_hidden_states=encoder_hidden_states,
|
972 |
+
attention_mask=attention_mask,
|
973 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
974 |
+
encoder_attention_mask=encoder_attention_mask,
|
975 |
+
image_encoder_hidden_states=image_encoder_hidden_states,
|
976 |
+
)
|
977 |
+
# To support T2I-Adapter-XL
|
978 |
+
if (
|
979 |
+
is_adapter
|
980 |
+
and len(down_block_additional_residuals) > 0
|
981 |
+
and sample.shape == down_block_additional_residuals[0].shape
|
982 |
+
):
|
983 |
+
sample += down_block_additional_residuals.pop(0)
|
984 |
+
|
985 |
+
if is_controlnet:
|
986 |
+
sample = sample + mid_block_additional_residual
|
987 |
+
|
988 |
+
# 5. up
|
989 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
990 |
+
is_final_block = i == len(self.up_blocks) - 1
|
991 |
+
|
992 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
993 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
994 |
+
|
995 |
+
# if we have not reached the final block and need to forward the
|
996 |
+
# upsample size, we do it here
|
997 |
+
if not is_final_block and forward_upsample_size:
|
998 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
999 |
+
|
1000 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
1001 |
+
sample = upsample_block(
|
1002 |
+
hidden_states=sample,
|
1003 |
+
temb=emb,
|
1004 |
+
res_hidden_states_tuple=res_samples,
|
1005 |
+
encoder_hidden_states=encoder_hidden_states,
|
1006 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1007 |
+
upsample_size=upsample_size,
|
1008 |
+
attention_mask=attention_mask,
|
1009 |
+
encoder_attention_mask=encoder_attention_mask,
|
1010 |
+
image_encoder_hidden_states=image_encoder_hidden_states,
|
1011 |
+
)
|
1012 |
+
else:
|
1013 |
+
sample = upsample_block(
|
1014 |
+
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
1015 |
+
)
|
1016 |
+
|
1017 |
+
# 6. post-process
|
1018 |
+
if self.conv_norm_out:
|
1019 |
+
sample = self.conv_norm_out(sample)
|
1020 |
+
sample = self.conv_act(sample)
|
1021 |
+
sample = self.conv_out(sample)
|
1022 |
+
|
1023 |
+
if not return_dict:
|
1024 |
+
return (sample,)
|
1025 |
+
|
1026 |
+
return UNet2DConditionOutput(sample=sample)
|
1027 |
+
|
1028 |
+
@classmethod
|
1029 |
+
def from_pretrained_orig(cls, pretrained_model_path, seesr_model_path, subfolder=None, use_image_cross_attention=False, **kwargs):
|
1030 |
+
if subfolder is not None:
|
1031 |
+
pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
|
1032 |
+
seesr_model_path = os.path.join(seesr_model_path, subfolder)
|
1033 |
+
|
1034 |
+
config_file = os.path.join(pretrained_model_path, 'config.json')
|
1035 |
+
if not os.path.isfile(config_file):
|
1036 |
+
raise RuntimeError(f"{config_file} does not exist")
|
1037 |
+
with open(config_file, "r") as f:
|
1038 |
+
config = json.load(f)
|
1039 |
+
|
1040 |
+
config['use_image_cross_attention'] = use_image_cross_attention
|
1041 |
+
|
1042 |
+
from diffusers.utils import WEIGHTS_NAME
|
1043 |
+
from diffusers.utils import SAFETENSORS_WEIGHTS_NAME
|
1044 |
+
|
1045 |
+
|
1046 |
+
model = cls.from_config(config)
|
1047 |
+
|
1048 |
+
## for .bin file
|
1049 |
+
# model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
|
1050 |
+
# if not os.path.isfile(model_file):
|
1051 |
+
# raise RuntimeError(f"{model_file} does not exist")
|
1052 |
+
# state_dict = torch.load(model_file, map_location="cpu")
|
1053 |
+
# model.load_state_dict(state_dict, strict=False)
|
1054 |
+
|
1055 |
+
## for .safetensors file
|
1056 |
+
import safetensors
|
1057 |
+
model_file = os.path.join(pretrained_model_path, SAFETENSORS_WEIGHTS_NAME)
|
1058 |
+
model_file_seesr = os.path.join(seesr_model_path, SAFETENSORS_WEIGHTS_NAME)
|
1059 |
+
if not os.path.isfile(model_file):
|
1060 |
+
raise RuntimeError(f"{model_file} does not exist")
|
1061 |
+
if not os.path.isfile(model_file_seesr):
|
1062 |
+
raise RuntimeError(f"{model_file_seesr} does not exist")
|
1063 |
+
state_dict = safetensors.torch.load_file(model_file, device="cpu")
|
1064 |
+
state_dict_seesr = safetensors.torch.load_file(model_file_seesr, device="cpu")
|
1065 |
+
# for k, v in model_seesr.state_dict().items():
|
1066 |
+
for k, v in state_dict_seesr.items():
|
1067 |
+
if 'image_attentions' in k:
|
1068 |
+
state_dict.update({k: v})
|
1069 |
+
model.load_state_dict(state_dict, strict=False)
|
1070 |
+
|
1071 |
+
return model
|
pipelines/pipeline_seesr.py
ADDED
@@ -0,0 +1,1225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
import inspect
|
17 |
+
import os
|
18 |
+
import warnings
|
19 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import PIL.Image
|
23 |
+
import torch
|
24 |
+
import torch.nn.functional as F
|
25 |
+
from torchvision.utils import save_image
|
26 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
27 |
+
|
28 |
+
from diffusers.image_processor import VaeImageProcessor
|
29 |
+
from diffusers.loaders import TextualInversionLoaderMixin
|
30 |
+
from diffusers.models import AutoencoderKL, ControlNetModel, UNet2DConditionModel
|
31 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
32 |
+
from diffusers.utils import (
|
33 |
+
PIL_INTERPOLATION,
|
34 |
+
is_accelerate_available,
|
35 |
+
is_accelerate_version,
|
36 |
+
logging,
|
37 |
+
replace_example_docstring,
|
38 |
+
)
|
39 |
+
|
40 |
+
from diffusers.utils.torch_utils import is_compiled_module, randn_tensor
|
41 |
+
|
42 |
+
from diffusers.pipeline_utils import DiffusionPipeline
|
43 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
44 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
45 |
+
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
|
46 |
+
|
47 |
+
|
48 |
+
from utils.vaehook import VAEHook, perfcount
|
49 |
+
|
50 |
+
|
51 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
52 |
+
|
53 |
+
|
54 |
+
EXAMPLE_DOC_STRING = """
|
55 |
+
Examples:
|
56 |
+
```py
|
57 |
+
>>> # !pip install opencv-python transformers accelerate
|
58 |
+
>>> from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
|
59 |
+
>>> from diffusers.utils import load_image
|
60 |
+
>>> import numpy as np
|
61 |
+
>>> import torch
|
62 |
+
|
63 |
+
>>> import cv2
|
64 |
+
>>> from PIL import Image
|
65 |
+
|
66 |
+
>>> # download an image
|
67 |
+
>>> image = load_image(
|
68 |
+
... "https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png"
|
69 |
+
... )
|
70 |
+
>>> image = np.array(image)
|
71 |
+
|
72 |
+
>>> # get canny image
|
73 |
+
>>> image = cv2.Canny(image, 100, 200)
|
74 |
+
>>> image = image[:, :, None]
|
75 |
+
>>> image = np.concatenate([image, image, image], axis=2)
|
76 |
+
>>> canny_image = Image.fromarray(image)
|
77 |
+
|
78 |
+
>>> # load control net and stable diffusion v1-5
|
79 |
+
>>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
|
80 |
+
>>> pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
81 |
+
... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
|
82 |
+
... )
|
83 |
+
|
84 |
+
>>> # speed up diffusion process with faster scheduler and memory optimization
|
85 |
+
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
86 |
+
>>> # remove following line if xformers is not installed
|
87 |
+
>>> pipe.enable_xformers_memory_efficient_attention()
|
88 |
+
|
89 |
+
>>> pipe.enable_model_cpu_offload()
|
90 |
+
|
91 |
+
>>> # generate image
|
92 |
+
>>> generator = torch.manual_seed(0)
|
93 |
+
>>> image = pipe(
|
94 |
+
... "futuristic-looking woman", num_inference_steps=20, generator=generator, image=canny_image
|
95 |
+
... ).images[0]
|
96 |
+
```
|
97 |
+
"""
|
98 |
+
|
99 |
+
|
100 |
+
class StableDiffusionControlNetPipeline(DiffusionPipeline, TextualInversionLoaderMixin):
|
101 |
+
r"""
|
102 |
+
Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance.
|
103 |
+
|
104 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
105 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
106 |
+
|
107 |
+
In addition the pipeline inherits the following loading methods:
|
108 |
+
- *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`]
|
109 |
+
|
110 |
+
Args:
|
111 |
+
vae ([`AutoencoderKL`]):
|
112 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
113 |
+
text_encoder ([`CLIPTextModel`]):
|
114 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
115 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
116 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
117 |
+
tokenizer (`CLIPTokenizer`):
|
118 |
+
Tokenizer of class
|
119 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
120 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
121 |
+
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
|
122 |
+
Provides additional conditioning to the unet during the denoising process. If you set multiple ControlNets
|
123 |
+
as a list, the outputs from each ControlNet are added together to create one combined additional
|
124 |
+
conditioning.
|
125 |
+
scheduler ([`SchedulerMixin`]):
|
126 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
127 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
128 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
129 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
130 |
+
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
131 |
+
feature_extractor ([`CLIPImageProcessor`]):
|
132 |
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
133 |
+
"""
|
134 |
+
_optional_components = ["safety_checker", "feature_extractor"]
|
135 |
+
|
136 |
+
def __init__(
|
137 |
+
self,
|
138 |
+
vae: AutoencoderKL,
|
139 |
+
text_encoder: CLIPTextModel,
|
140 |
+
tokenizer: CLIPTokenizer,
|
141 |
+
unet: UNet2DConditionModel,
|
142 |
+
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
|
143 |
+
scheduler: KarrasDiffusionSchedulers,
|
144 |
+
safety_checker: StableDiffusionSafetyChecker,
|
145 |
+
feature_extractor: CLIPImageProcessor,
|
146 |
+
requires_safety_checker: bool = True,
|
147 |
+
):
|
148 |
+
super().__init__()
|
149 |
+
|
150 |
+
if safety_checker is None and requires_safety_checker:
|
151 |
+
logger.warning(
|
152 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
153 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
154 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
155 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
156 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
157 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
158 |
+
)
|
159 |
+
|
160 |
+
if safety_checker is not None and feature_extractor is None:
|
161 |
+
raise ValueError(
|
162 |
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
163 |
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
164 |
+
)
|
165 |
+
|
166 |
+
if isinstance(controlnet, (list, tuple)):
|
167 |
+
controlnet = MultiControlNetModel(controlnet)
|
168 |
+
|
169 |
+
self.register_modules(
|
170 |
+
vae=vae,
|
171 |
+
text_encoder=text_encoder,
|
172 |
+
tokenizer=tokenizer,
|
173 |
+
unet=unet,
|
174 |
+
controlnet=controlnet,
|
175 |
+
scheduler=scheduler,
|
176 |
+
safety_checker=safety_checker,
|
177 |
+
feature_extractor=feature_extractor,
|
178 |
+
)
|
179 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
180 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
181 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
182 |
+
|
183 |
+
def _init_tiled_vae(self,
|
184 |
+
encoder_tile_size = 256,
|
185 |
+
decoder_tile_size = 256,
|
186 |
+
fast_decoder = False,
|
187 |
+
fast_encoder = False,
|
188 |
+
color_fix = False,
|
189 |
+
vae_to_gpu = True):
|
190 |
+
# save original forward (only once)
|
191 |
+
if not hasattr(self.vae.encoder, 'original_forward'):
|
192 |
+
setattr(self.vae.encoder, 'original_forward', self.vae.encoder.forward)
|
193 |
+
if not hasattr(self.vae.decoder, 'original_forward'):
|
194 |
+
setattr(self.vae.decoder, 'original_forward', self.vae.decoder.forward)
|
195 |
+
|
196 |
+
encoder = self.vae.encoder
|
197 |
+
decoder = self.vae.decoder
|
198 |
+
|
199 |
+
self.vae.encoder.forward = VAEHook(
|
200 |
+
encoder, encoder_tile_size, is_decoder=False, fast_decoder=fast_decoder, fast_encoder=fast_encoder, color_fix=color_fix, to_gpu=vae_to_gpu)
|
201 |
+
self.vae.decoder.forward = VAEHook(
|
202 |
+
decoder, decoder_tile_size, is_decoder=True, fast_decoder=fast_decoder, fast_encoder=fast_encoder, color_fix=color_fix, to_gpu=vae_to_gpu)
|
203 |
+
|
204 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
205 |
+
def enable_vae_slicing(self):
|
206 |
+
r"""
|
207 |
+
Enable sliced VAE decoding.
|
208 |
+
|
209 |
+
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
|
210 |
+
steps. This is useful to save some memory and allow larger batch sizes.
|
211 |
+
"""
|
212 |
+
self.vae.enable_slicing()
|
213 |
+
|
214 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
215 |
+
def disable_vae_slicing(self):
|
216 |
+
r"""
|
217 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
|
218 |
+
computing decoding in one step.
|
219 |
+
"""
|
220 |
+
self.vae.disable_slicing()
|
221 |
+
|
222 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
223 |
+
def enable_vae_tiling(self):
|
224 |
+
r"""
|
225 |
+
Enable tiled VAE decoding.
|
226 |
+
|
227 |
+
When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in
|
228 |
+
several steps. This is useful to save a large amount of memory and to allow the processing of larger images.
|
229 |
+
"""
|
230 |
+
self.vae.enable_tiling()
|
231 |
+
|
232 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
233 |
+
def disable_vae_tiling(self):
|
234 |
+
r"""
|
235 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to
|
236 |
+
computing decoding in one step.
|
237 |
+
"""
|
238 |
+
self.vae.disable_tiling()
|
239 |
+
|
240 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
241 |
+
r"""
|
242 |
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
243 |
+
text_encoder, vae, controlnet, and safety checker have their state dicts saved to CPU and then are moved to a
|
244 |
+
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
245 |
+
Note that offloading happens on a submodule basis. Memory savings are higher than with
|
246 |
+
`enable_model_cpu_offload`, but performance is lower.
|
247 |
+
"""
|
248 |
+
if is_accelerate_available():
|
249 |
+
from accelerate import cpu_offload
|
250 |
+
else:
|
251 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
252 |
+
|
253 |
+
device = torch.device(f"cuda:{gpu_id}")
|
254 |
+
|
255 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.controlnet]:
|
256 |
+
cpu_offload(cpu_offloaded_model, device)
|
257 |
+
|
258 |
+
if self.safety_checker is not None:
|
259 |
+
cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True)
|
260 |
+
|
261 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
262 |
+
r"""
|
263 |
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
264 |
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
265 |
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
266 |
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
267 |
+
"""
|
268 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
269 |
+
from accelerate import cpu_offload_with_hook
|
270 |
+
else:
|
271 |
+
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
|
272 |
+
|
273 |
+
device = torch.device(f"cuda:{gpu_id}")
|
274 |
+
|
275 |
+
hook = None
|
276 |
+
for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
|
277 |
+
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
|
278 |
+
|
279 |
+
if self.safety_checker is not None:
|
280 |
+
# the safety checker can offload the vae again
|
281 |
+
_, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook)
|
282 |
+
|
283 |
+
# control net hook has be manually offloaded as it alternates with unet
|
284 |
+
cpu_offload_with_hook(self.controlnet, device)
|
285 |
+
|
286 |
+
# We'll offload the last model manually.
|
287 |
+
self.final_offload_hook = hook
|
288 |
+
|
289 |
+
@property
|
290 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
|
291 |
+
def _execution_device(self):
|
292 |
+
r"""
|
293 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
294 |
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
295 |
+
hooks.
|
296 |
+
"""
|
297 |
+
if not hasattr(self.unet, "_hf_hook"):
|
298 |
+
return self.device
|
299 |
+
for module in self.unet.modules():
|
300 |
+
if (
|
301 |
+
hasattr(module, "_hf_hook")
|
302 |
+
and hasattr(module._hf_hook, "execution_device")
|
303 |
+
and module._hf_hook.execution_device is not None
|
304 |
+
):
|
305 |
+
return torch.device(module._hf_hook.execution_device)
|
306 |
+
return self.device
|
307 |
+
|
308 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
|
309 |
+
def _encode_prompt(
|
310 |
+
self,
|
311 |
+
prompt,
|
312 |
+
device,
|
313 |
+
num_images_per_prompt,
|
314 |
+
do_classifier_free_guidance,
|
315 |
+
negative_prompt=None,
|
316 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
317 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
318 |
+
ram_encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
319 |
+
):
|
320 |
+
r"""
|
321 |
+
Encodes the prompt into text encoder hidden states.
|
322 |
+
|
323 |
+
Args:
|
324 |
+
prompt (`str` or `List[str]`, *optional*):
|
325 |
+
prompt to be encoded
|
326 |
+
device: (`torch.device`):
|
327 |
+
torch device
|
328 |
+
num_images_per_prompt (`int`):
|
329 |
+
number of images that should be generated per prompt
|
330 |
+
do_classifier_free_guidance (`bool`):
|
331 |
+
whether to use classifier free guidance or not
|
332 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
333 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
334 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
335 |
+
less than `1`).
|
336 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
337 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
338 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
339 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
340 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
341 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
342 |
+
argument.
|
343 |
+
"""
|
344 |
+
if prompt is not None and isinstance(prompt, str):
|
345 |
+
batch_size = 1
|
346 |
+
elif prompt is not None and isinstance(prompt, list):
|
347 |
+
batch_size = len(prompt)
|
348 |
+
else:
|
349 |
+
batch_size = prompt_embeds.shape[0]
|
350 |
+
|
351 |
+
if prompt_embeds is None:
|
352 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
353 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
354 |
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
355 |
+
|
356 |
+
text_inputs = self.tokenizer(
|
357 |
+
prompt,
|
358 |
+
padding="max_length",
|
359 |
+
max_length=self.tokenizer.model_max_length,
|
360 |
+
truncation=True,
|
361 |
+
return_tensors="pt",
|
362 |
+
)
|
363 |
+
text_input_ids = text_inputs.input_ids
|
364 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
365 |
+
|
366 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
367 |
+
text_input_ids, untruncated_ids
|
368 |
+
):
|
369 |
+
removed_text = self.tokenizer.batch_decode(
|
370 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
371 |
+
)
|
372 |
+
logger.warning(
|
373 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
374 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
375 |
+
)
|
376 |
+
|
377 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
378 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
379 |
+
else:
|
380 |
+
attention_mask = None
|
381 |
+
|
382 |
+
prompt_embeds = self.text_encoder(
|
383 |
+
text_input_ids.to(device),
|
384 |
+
attention_mask=attention_mask,
|
385 |
+
)
|
386 |
+
prompt_embeds = prompt_embeds[0]
|
387 |
+
|
388 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
389 |
+
|
390 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
391 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
392 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
393 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
394 |
+
|
395 |
+
# get unconditional embeddings for classifier free guidance
|
396 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
397 |
+
uncond_tokens: List[str]
|
398 |
+
if negative_prompt is None:
|
399 |
+
uncond_tokens = [""] * batch_size
|
400 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
401 |
+
raise TypeError(
|
402 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
403 |
+
f" {type(prompt)}."
|
404 |
+
)
|
405 |
+
elif isinstance(negative_prompt, str):
|
406 |
+
uncond_tokens = [negative_prompt]
|
407 |
+
elif batch_size != len(negative_prompt):
|
408 |
+
raise ValueError(
|
409 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
410 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
411 |
+
" the batch size of `prompt`."
|
412 |
+
)
|
413 |
+
else:
|
414 |
+
uncond_tokens = negative_prompt
|
415 |
+
|
416 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
417 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
418 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
419 |
+
|
420 |
+
max_length = prompt_embeds.shape[1]
|
421 |
+
uncond_input = self.tokenizer(
|
422 |
+
uncond_tokens,
|
423 |
+
padding="max_length",
|
424 |
+
max_length=max_length,
|
425 |
+
truncation=True,
|
426 |
+
return_tensors="pt",
|
427 |
+
)
|
428 |
+
|
429 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
430 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
431 |
+
else:
|
432 |
+
attention_mask = None
|
433 |
+
|
434 |
+
negative_prompt_embeds = self.text_encoder(
|
435 |
+
uncond_input.input_ids.to(device),
|
436 |
+
attention_mask=attention_mask,
|
437 |
+
)
|
438 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
439 |
+
|
440 |
+
if do_classifier_free_guidance:
|
441 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
442 |
+
seq_len = negative_prompt_embeds.shape[1]
|
443 |
+
|
444 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
445 |
+
|
446 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
447 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
448 |
+
|
449 |
+
# For classifier free guidance, we need to do two forward passes.
|
450 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
451 |
+
# to avoid doing two forward passes
|
452 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
453 |
+
ram_encoder_hidden_states = torch.cat([ram_encoder_hidden_states, ram_encoder_hidden_states])
|
454 |
+
|
455 |
+
return prompt_embeds, ram_encoder_hidden_states
|
456 |
+
|
457 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
458 |
+
def run_safety_checker(self, image, device, dtype):
|
459 |
+
if self.safety_checker is None:
|
460 |
+
has_nsfw_concept = None
|
461 |
+
else:
|
462 |
+
if torch.is_tensor(image):
|
463 |
+
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
464 |
+
else:
|
465 |
+
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
466 |
+
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
467 |
+
image, has_nsfw_concept = self.safety_checker(
|
468 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
469 |
+
)
|
470 |
+
return image, has_nsfw_concept
|
471 |
+
|
472 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
|
473 |
+
def decode_latents(self, latents):
|
474 |
+
warnings.warn(
|
475 |
+
"The decode_latents method is deprecated and will be removed in a future version. Please"
|
476 |
+
" use VaeImageProcessor instead",
|
477 |
+
FutureWarning,
|
478 |
+
)
|
479 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
480 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
481 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
482 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
483 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
484 |
+
return image
|
485 |
+
|
486 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
487 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
488 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
489 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
490 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
491 |
+
# and should be between [0, 1]
|
492 |
+
|
493 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
494 |
+
extra_step_kwargs = {}
|
495 |
+
if accepts_eta:
|
496 |
+
extra_step_kwargs["eta"] = eta
|
497 |
+
|
498 |
+
# check if the scheduler accepts generator
|
499 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
500 |
+
if accepts_generator:
|
501 |
+
extra_step_kwargs["generator"] = generator
|
502 |
+
#extra_step_kwargs["generator"] = generator
|
503 |
+
return extra_step_kwargs
|
504 |
+
|
505 |
+
def check_inputs(
|
506 |
+
self,
|
507 |
+
prompt,
|
508 |
+
image,
|
509 |
+
height,
|
510 |
+
width,
|
511 |
+
callback_steps,
|
512 |
+
negative_prompt=None,
|
513 |
+
prompt_embeds=None,
|
514 |
+
negative_prompt_embeds=None,
|
515 |
+
controlnet_conditioning_scale=1.0,
|
516 |
+
):
|
517 |
+
if height % 8 != 0 or width % 8 != 0:
|
518 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
519 |
+
|
520 |
+
if (callback_steps is None) or (
|
521 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
522 |
+
):
|
523 |
+
raise ValueError(
|
524 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
525 |
+
f" {type(callback_steps)}."
|
526 |
+
)
|
527 |
+
|
528 |
+
if prompt is not None and prompt_embeds is not None:
|
529 |
+
raise ValueError(
|
530 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
531 |
+
" only forward one of the two."
|
532 |
+
)
|
533 |
+
elif prompt is None and prompt_embeds is None:
|
534 |
+
raise ValueError(
|
535 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
536 |
+
)
|
537 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
538 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
539 |
+
|
540 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
541 |
+
raise ValueError(
|
542 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
543 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
544 |
+
)
|
545 |
+
|
546 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
547 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
548 |
+
raise ValueError(
|
549 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
550 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
551 |
+
f" {negative_prompt_embeds.shape}."
|
552 |
+
)
|
553 |
+
|
554 |
+
# `prompt` needs more sophisticated handling when there are multiple
|
555 |
+
# conditionings.
|
556 |
+
if isinstance(self.controlnet, MultiControlNetModel):
|
557 |
+
if isinstance(prompt, list):
|
558 |
+
logger.warning(
|
559 |
+
f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
|
560 |
+
" prompts. The conditionings will be fixed across the prompts."
|
561 |
+
)
|
562 |
+
|
563 |
+
# Check `image`
|
564 |
+
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
|
565 |
+
self.controlnet, torch._dynamo.eval_frame.OptimizedModule
|
566 |
+
)
|
567 |
+
if (
|
568 |
+
isinstance(self.controlnet, ControlNetModel)
|
569 |
+
or is_compiled
|
570 |
+
and isinstance(self.controlnet._orig_mod, ControlNetModel)
|
571 |
+
):
|
572 |
+
self.check_image(image, prompt, prompt_embeds)
|
573 |
+
elif (
|
574 |
+
isinstance(self.controlnet, MultiControlNetModel)
|
575 |
+
or is_compiled
|
576 |
+
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
|
577 |
+
):
|
578 |
+
if not isinstance(image, list):
|
579 |
+
raise TypeError("For multiple controlnets: `image` must be type `list`")
|
580 |
+
|
581 |
+
# When `image` is a nested list:
|
582 |
+
# (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
|
583 |
+
elif any(isinstance(i, list) for i in image):
|
584 |
+
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
|
585 |
+
elif len(image) != len(self.controlnet.nets):
|
586 |
+
raise ValueError(
|
587 |
+
"For multiple controlnets: `image` must have the same length as the number of controlnets."
|
588 |
+
)
|
589 |
+
|
590 |
+
for image_ in image:
|
591 |
+
self.check_image(image_, prompt, prompt_embeds)
|
592 |
+
else:
|
593 |
+
assert False
|
594 |
+
|
595 |
+
# Check `controlnet_conditioning_scale`
|
596 |
+
if (
|
597 |
+
isinstance(self.controlnet, ControlNetModel)
|
598 |
+
or is_compiled
|
599 |
+
and isinstance(self.controlnet._orig_mod, ControlNetModel)
|
600 |
+
):
|
601 |
+
if not isinstance(controlnet_conditioning_scale, float):
|
602 |
+
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
|
603 |
+
elif (
|
604 |
+
isinstance(self.controlnet, MultiControlNetModel)
|
605 |
+
or is_compiled
|
606 |
+
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
|
607 |
+
):
|
608 |
+
if isinstance(controlnet_conditioning_scale, list):
|
609 |
+
if any(isinstance(i, list) for i in controlnet_conditioning_scale):
|
610 |
+
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
|
611 |
+
elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
|
612 |
+
self.controlnet.nets
|
613 |
+
):
|
614 |
+
raise ValueError(
|
615 |
+
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
|
616 |
+
" the same length as the number of controlnets"
|
617 |
+
)
|
618 |
+
else:
|
619 |
+
assert False
|
620 |
+
|
621 |
+
def check_image(self, image, prompt, prompt_embeds):
|
622 |
+
image_is_pil = isinstance(image, PIL.Image.Image)
|
623 |
+
image_is_tensor = isinstance(image, torch.Tensor)
|
624 |
+
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
|
625 |
+
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
|
626 |
+
|
627 |
+
if not image_is_pil and not image_is_tensor and not image_is_pil_list and not image_is_tensor_list:
|
628 |
+
raise TypeError(
|
629 |
+
"image must be passed and be one of PIL image, torch tensor, list of PIL images, or list of torch tensors"
|
630 |
+
)
|
631 |
+
|
632 |
+
if image_is_pil:
|
633 |
+
image_batch_size = 1
|
634 |
+
elif image_is_tensor:
|
635 |
+
image_batch_size = image.shape[0]
|
636 |
+
elif image_is_pil_list:
|
637 |
+
image_batch_size = len(image)
|
638 |
+
elif image_is_tensor_list:
|
639 |
+
image_batch_size = len(image)
|
640 |
+
|
641 |
+
if prompt is not None and isinstance(prompt, str):
|
642 |
+
prompt_batch_size = 1
|
643 |
+
elif prompt is not None and isinstance(prompt, list):
|
644 |
+
prompt_batch_size = len(prompt)
|
645 |
+
elif prompt_embeds is not None:
|
646 |
+
prompt_batch_size = prompt_embeds.shape[0]
|
647 |
+
|
648 |
+
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
|
649 |
+
raise ValueError(
|
650 |
+
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
|
651 |
+
)
|
652 |
+
|
653 |
+
def prepare_image(
|
654 |
+
self,
|
655 |
+
image,
|
656 |
+
width,
|
657 |
+
height,
|
658 |
+
batch_size,
|
659 |
+
num_images_per_prompt,
|
660 |
+
device,
|
661 |
+
dtype,
|
662 |
+
do_classifier_free_guidance=False,
|
663 |
+
guess_mode=False,
|
664 |
+
):
|
665 |
+
if not isinstance(image, torch.Tensor):
|
666 |
+
if isinstance(image, PIL.Image.Image):
|
667 |
+
image = [image]
|
668 |
+
|
669 |
+
if isinstance(image[0], PIL.Image.Image):
|
670 |
+
images = []
|
671 |
+
|
672 |
+
for image_ in image:
|
673 |
+
image_ = image_.convert("RGB")
|
674 |
+
#image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])
|
675 |
+
image_ = np.array(image_)
|
676 |
+
image_ = image_[None, :]
|
677 |
+
images.append(image_)
|
678 |
+
|
679 |
+
image = images
|
680 |
+
|
681 |
+
image = np.concatenate(image, axis=0)
|
682 |
+
image = np.array(image).astype(np.float32) / 255.0
|
683 |
+
image = image.transpose(0, 3, 1, 2)
|
684 |
+
image = torch.from_numpy(image)#.flip(1)
|
685 |
+
elif isinstance(image[0], torch.Tensor):
|
686 |
+
image = torch.cat(image, dim=0)
|
687 |
+
|
688 |
+
image_batch_size = image.shape[0]
|
689 |
+
|
690 |
+
if image_batch_size == 1:
|
691 |
+
repeat_by = batch_size
|
692 |
+
else:
|
693 |
+
# image batch size is the same as prompt batch size
|
694 |
+
repeat_by = num_images_per_prompt
|
695 |
+
|
696 |
+
image = image.repeat_interleave(repeat_by, dim=0)
|
697 |
+
|
698 |
+
image = image.to(device=device, dtype=dtype)
|
699 |
+
|
700 |
+
if do_classifier_free_guidance and not guess_mode:
|
701 |
+
image = torch.cat([image] * 2)
|
702 |
+
|
703 |
+
return image
|
704 |
+
|
705 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
706 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
707 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
708 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
709 |
+
raise ValueError(
|
710 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
711 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
712 |
+
)
|
713 |
+
|
714 |
+
if latents is None:
|
715 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
716 |
+
#latents = randn_tensor(shape, generator=None, device=device, dtype=dtype)
|
717 |
+
#offset_noise = torch.randn(batch_size, num_channels_latents, 1, 1, device=device)
|
718 |
+
#latents = latents + 0.1 * offset_noise
|
719 |
+
else:
|
720 |
+
latents = latents.to(device)
|
721 |
+
|
722 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
723 |
+
latents = latents * self.scheduler.init_noise_sigma
|
724 |
+
return latents
|
725 |
+
|
726 |
+
def _default_height_width(self, height, width, image):
|
727 |
+
# NOTE: It is possible that a list of images have different
|
728 |
+
# dimensions for each image, so just checking the first image
|
729 |
+
# is not _exactly_ correct, but it is simple.
|
730 |
+
while isinstance(image, list):
|
731 |
+
image = image[0]
|
732 |
+
|
733 |
+
if height is None:
|
734 |
+
if isinstance(image, PIL.Image.Image):
|
735 |
+
height = image.height
|
736 |
+
elif isinstance(image, torch.Tensor):
|
737 |
+
height = image.shape[2]
|
738 |
+
|
739 |
+
height = (height // 8) * 8 # round down to nearest multiple of 8
|
740 |
+
|
741 |
+
if width is None:
|
742 |
+
if isinstance(image, PIL.Image.Image):
|
743 |
+
width = image.width
|
744 |
+
elif isinstance(image, torch.Tensor):
|
745 |
+
width = image.shape[3]
|
746 |
+
|
747 |
+
width = (width // 8) * 8 # round down to nearest multiple of 8
|
748 |
+
|
749 |
+
return height, width
|
750 |
+
|
751 |
+
# override DiffusionPipeline
|
752 |
+
def save_pretrained(
|
753 |
+
self,
|
754 |
+
save_directory: Union[str, os.PathLike],
|
755 |
+
safe_serialization: bool = False,
|
756 |
+
variant: Optional[str] = None,
|
757 |
+
):
|
758 |
+
if isinstance(self.controlnet, ControlNetModel):
|
759 |
+
super().save_pretrained(save_directory, safe_serialization, variant)
|
760 |
+
else:
|
761 |
+
raise NotImplementedError("Currently, the `save_pretrained()` is not implemented for Multi-ControlNet.")
|
762 |
+
|
763 |
+
def _gaussian_weights(self, tile_width, tile_height, nbatches):
|
764 |
+
"""Generates a gaussian mask of weights for tile contributions"""
|
765 |
+
from numpy import pi, exp, sqrt
|
766 |
+
import numpy as np
|
767 |
+
|
768 |
+
latent_width = tile_width
|
769 |
+
latent_height = tile_height
|
770 |
+
|
771 |
+
var = 0.01
|
772 |
+
midpoint = (latent_width - 1) / 2 # -1 because index goes from 0 to latent_width - 1
|
773 |
+
x_probs = [exp(-(x-midpoint)*(x-midpoint)/(latent_width*latent_width)/(2*var)) / sqrt(2*pi*var) for x in range(latent_width)]
|
774 |
+
midpoint = latent_height / 2
|
775 |
+
y_probs = [exp(-(y-midpoint)*(y-midpoint)/(latent_height*latent_height)/(2*var)) / sqrt(2*pi*var) for y in range(latent_height)]
|
776 |
+
|
777 |
+
weights = np.outer(y_probs, x_probs)
|
778 |
+
return torch.tile(torch.tensor(weights, device=self.device), (nbatches, self.unet.config.in_channels, 1, 1))
|
779 |
+
|
780 |
+
@perfcount
|
781 |
+
@torch.no_grad()
|
782 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
783 |
+
def __call__(
|
784 |
+
self,
|
785 |
+
prompt: Union[str, List[str]] = None,
|
786 |
+
image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] = None,
|
787 |
+
height: Optional[int] = None,
|
788 |
+
width: Optional[int] = None,
|
789 |
+
num_inference_steps: int = 50,
|
790 |
+
guidance_scale: float = 7.5,
|
791 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
792 |
+
num_images_per_prompt: Optional[int] = 1,
|
793 |
+
eta: float = 0.0,
|
794 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
795 |
+
latents: Optional[torch.FloatTensor] = None,
|
796 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
797 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
798 |
+
output_type: Optional[str] = "pil",
|
799 |
+
return_dict: bool = True,
|
800 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
801 |
+
callback_steps: int = 1,
|
802 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
803 |
+
conditioning_scale: Union[float, List[float]] = 1.0,
|
804 |
+
guess_mode: bool = False,
|
805 |
+
image_sr = None,
|
806 |
+
start_steps = 999,
|
807 |
+
start_point = 'noise',
|
808 |
+
ram_encoder_hidden_states=None,
|
809 |
+
latent_tiled_size=320,
|
810 |
+
latent_tiled_overlap=4,
|
811 |
+
args=None
|
812 |
+
):
|
813 |
+
r"""
|
814 |
+
Function invoked when calling the pipeline for generation.
|
815 |
+
|
816 |
+
Args:
|
817 |
+
prompt (`str` or `List[str]`, *optional*):
|
818 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
819 |
+
instead.
|
820 |
+
image (`torch.FloatTensor`, `PIL.Image.Image`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`,
|
821 |
+
`List[List[torch.FloatTensor]]`, or `List[List[PIL.Image.Image]]`):
|
822 |
+
The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
|
823 |
+
the type is specified as `Torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can
|
824 |
+
also be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If
|
825 |
+
height and/or width are passed, `image` is resized according to them. If multiple ControlNets are
|
826 |
+
specified in init, images must be passed as a list such that each element of the list can be correctly
|
827 |
+
batched for input to a single controlnet.
|
828 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
829 |
+
The height in pixels of the generated image.
|
830 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
831 |
+
The width in pixels of the generated image.
|
832 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
833 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
834 |
+
expense of slower inference.
|
835 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
836 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
837 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
838 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
839 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
840 |
+
usually at the expense of lower image quality.
|
841 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
842 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
843 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
844 |
+
less than `1`).
|
845 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
846 |
+
The number of images to generate per prompt.
|
847 |
+
eta (`float`, *optional*, defaults to 0.0):
|
848 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
849 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
850 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
851 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
852 |
+
to make generation deterministic.
|
853 |
+
latents (`torch.FloatTensor`, *optional*):
|
854 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
855 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
856 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
857 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
858 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
859 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
860 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
861 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
862 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
863 |
+
argument.
|
864 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
865 |
+
The output format of the generate image. Choose between
|
866 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
867 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
868 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
869 |
+
plain tuple.
|
870 |
+
callback (`Callable`, *optional*):
|
871 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
872 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
873 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
874 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
875 |
+
called at every step.
|
876 |
+
cross_attention_kwargs (`dict`, *optional*):
|
877 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
878 |
+
`self.processor` in
|
879 |
+
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
880 |
+
conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
881 |
+
The outputs of the controlnet are multiplied by `conditioning_scale` before they are added
|
882 |
+
to the residual in the original unet. If multiple ControlNets are specified in init, you can set the
|
883 |
+
corresponding scale as a list.
|
884 |
+
guess_mode (`bool`, *optional*, defaults to `False`):
|
885 |
+
In this mode, the ControlNet encoder will try best to recognize the content of the input image even if
|
886 |
+
you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended.
|
887 |
+
|
888 |
+
Examples:
|
889 |
+
|
890 |
+
Returns:
|
891 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
892 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
893 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
894 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
895 |
+
(nsfw) content, according to the `safety_checker`.
|
896 |
+
"""
|
897 |
+
# 0. Default height and width to unet
|
898 |
+
height, width = self._default_height_width(height, width, image)
|
899 |
+
|
900 |
+
# 1. Check inputs. Raise error if not correct
|
901 |
+
"""
|
902 |
+
self.check_inputs(
|
903 |
+
prompt,
|
904 |
+
image,
|
905 |
+
height,
|
906 |
+
width,
|
907 |
+
callback_steps,
|
908 |
+
negative_prompt,
|
909 |
+
prompt_embeds,
|
910 |
+
negative_prompt_embeds,
|
911 |
+
conditioning_scale,
|
912 |
+
)
|
913 |
+
"""
|
914 |
+
|
915 |
+
# 2. Define call parameters
|
916 |
+
if prompt is not None and isinstance(prompt, str):
|
917 |
+
batch_size = 1
|
918 |
+
elif prompt is not None and isinstance(prompt, list):
|
919 |
+
batch_size = len(prompt)
|
920 |
+
else:
|
921 |
+
batch_size = prompt_embeds.shape[0]
|
922 |
+
|
923 |
+
device = self._execution_device
|
924 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
925 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
926 |
+
# corresponds to doing no classifier free guidance.
|
927 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
928 |
+
|
929 |
+
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
930 |
+
"""
|
931 |
+
if isinstance(controlnet, MultiControlNetModel) and isinstance(conditioning_scale, float):
|
932 |
+
conditioning_scale = [conditioning_scale] * len(controlnet.nets)
|
933 |
+
|
934 |
+
global_pool_conditions = (
|
935 |
+
controlnet.config.global_pool_conditions
|
936 |
+
if isinstance(controlnet, ControlNetModel)
|
937 |
+
else controlnet.nets[0].config.global_pool_conditions
|
938 |
+
)
|
939 |
+
|
940 |
+
guess_mode = guess_mode or global_pool_conditions
|
941 |
+
"""
|
942 |
+
|
943 |
+
# 3. Encode input prompt
|
944 |
+
prompt_embeds, ram_encoder_hidden_states = self._encode_prompt(
|
945 |
+
prompt,
|
946 |
+
device,
|
947 |
+
num_images_per_prompt,
|
948 |
+
do_classifier_free_guidance,
|
949 |
+
negative_prompt,
|
950 |
+
prompt_embeds=prompt_embeds,
|
951 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
952 |
+
ram_encoder_hidden_states=ram_encoder_hidden_states
|
953 |
+
)
|
954 |
+
|
955 |
+
# 4. Prepare image
|
956 |
+
image = self.prepare_image(
|
957 |
+
image=image,
|
958 |
+
width=width,
|
959 |
+
height=height,
|
960 |
+
batch_size=batch_size * num_images_per_prompt,
|
961 |
+
num_images_per_prompt=num_images_per_prompt,
|
962 |
+
device=device,
|
963 |
+
dtype=controlnet.dtype,
|
964 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
965 |
+
guess_mode=guess_mode,
|
966 |
+
)
|
967 |
+
|
968 |
+
# 5. Prepare timesteps
|
969 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
970 |
+
timesteps = self.scheduler.timesteps
|
971 |
+
|
972 |
+
# 6. Prepare latent variables
|
973 |
+
num_channels_latents = self.unet.config.in_channels
|
974 |
+
latents = self.prepare_latents(
|
975 |
+
batch_size * num_images_per_prompt,
|
976 |
+
num_channels_latents,
|
977 |
+
height,
|
978 |
+
width,
|
979 |
+
prompt_embeds.dtype,
|
980 |
+
device,
|
981 |
+
generator,
|
982 |
+
latents,
|
983 |
+
)
|
984 |
+
|
985 |
+
# 6. Prepare the start point
|
986 |
+
if start_point == 'noise':
|
987 |
+
latents = latents
|
988 |
+
elif start_point == 'lr': # LRE Strategy
|
989 |
+
latents_condition_image = self.vae.encode(image*2-1).latent_dist.sample()
|
990 |
+
latents_condition_image = latents_condition_image * self.vae.config.scaling_factor
|
991 |
+
start_steps_tensor = torch.randint(start_steps, start_steps+1, (latents.shape[0],), device=latents.device)
|
992 |
+
start_steps_tensor = start_steps_tensor.long()
|
993 |
+
latents = self.scheduler.add_noise(latents_condition_image[0:1, ...], latents, start_steps_tensor)
|
994 |
+
|
995 |
+
|
996 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
997 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
998 |
+
|
999 |
+
# 8. Denoising loop
|
1000 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
1001 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1002 |
+
|
1003 |
+
_, _, h, w = latents.size()
|
1004 |
+
tile_size, tile_overlap = (latent_tiled_size, latent_tiled_overlap) if args is not None else (256, 8)
|
1005 |
+
if h*w<=tile_size*tile_size:
|
1006 |
+
print(f"[Tiled Latent]: the input size is tiny and unnecessary to tile.")
|
1007 |
+
else:
|
1008 |
+
print(f"[Tiled Latent]: the input size is {image.shape[-2]}x{image.shape[-1]}, need to tiled")
|
1009 |
+
|
1010 |
+
for i, t in enumerate(timesteps):
|
1011 |
+
# pass, if the timestep is larger than start_steps
|
1012 |
+
if t > start_steps:
|
1013 |
+
print(f'pass {t} steps.')
|
1014 |
+
continue
|
1015 |
+
|
1016 |
+
# expand the latents if we are doing classifier free guidance
|
1017 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
1018 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1019 |
+
|
1020 |
+
# controlnet(s) inference
|
1021 |
+
if guess_mode and do_classifier_free_guidance:
|
1022 |
+
# Infer ControlNet only for the conditional batch.
|
1023 |
+
controlnet_latent_model_input = latents
|
1024 |
+
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
|
1025 |
+
|
1026 |
+
else:
|
1027 |
+
controlnet_latent_model_input = latent_model_input
|
1028 |
+
controlnet_prompt_embeds = prompt_embeds
|
1029 |
+
|
1030 |
+
if h*w<=tile_size*tile_size: # tiled latent input
|
1031 |
+
down_block_res_samples, mid_block_res_sample = [None]*10, None
|
1032 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
1033 |
+
controlnet_latent_model_input,
|
1034 |
+
t,
|
1035 |
+
encoder_hidden_states=controlnet_prompt_embeds,
|
1036 |
+
controlnet_cond=image,
|
1037 |
+
conditioning_scale=conditioning_scale,
|
1038 |
+
guess_mode=guess_mode,
|
1039 |
+
return_dict=False,
|
1040 |
+
image_encoder_hidden_states = ram_encoder_hidden_states,
|
1041 |
+
)
|
1042 |
+
|
1043 |
+
|
1044 |
+
if guess_mode and do_classifier_free_guidance:
|
1045 |
+
# Infered ControlNet only for the conditional batch.
|
1046 |
+
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
1047 |
+
# add 0 to the unconditional batch to keep it unchanged.
|
1048 |
+
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|
1049 |
+
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
|
1050 |
+
|
1051 |
+
# predict the noise residual
|
1052 |
+
noise_pred = self.unet(
|
1053 |
+
latent_model_input,
|
1054 |
+
t,
|
1055 |
+
encoder_hidden_states=prompt_embeds,
|
1056 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1057 |
+
down_block_additional_residuals=down_block_res_samples,
|
1058 |
+
mid_block_additional_residual=mid_block_res_sample,
|
1059 |
+
return_dict=False,
|
1060 |
+
image_encoder_hidden_states = ram_encoder_hidden_states,
|
1061 |
+
)[0]
|
1062 |
+
else:
|
1063 |
+
tile_weights = self._gaussian_weights(tile_size, tile_size, 1)
|
1064 |
+
tile_size = min(tile_size, min(h, w))
|
1065 |
+
tile_weights = self._gaussian_weights(tile_size, tile_size, 1)
|
1066 |
+
|
1067 |
+
grid_rows = 0
|
1068 |
+
cur_x = 0
|
1069 |
+
while cur_x < latent_model_input.size(-1):
|
1070 |
+
cur_x = max(grid_rows * tile_size-tile_overlap * grid_rows, 0)+tile_size
|
1071 |
+
grid_rows += 1
|
1072 |
+
|
1073 |
+
grid_cols = 0
|
1074 |
+
cur_y = 0
|
1075 |
+
while cur_y < latent_model_input.size(-2):
|
1076 |
+
cur_y = max(grid_cols * tile_size-tile_overlap * grid_cols, 0)+tile_size
|
1077 |
+
grid_cols += 1
|
1078 |
+
|
1079 |
+
input_list = []
|
1080 |
+
cond_list = []
|
1081 |
+
img_list = []
|
1082 |
+
noise_preds = []
|
1083 |
+
for row in range(grid_rows):
|
1084 |
+
noise_preds_row = []
|
1085 |
+
for col in range(grid_cols):
|
1086 |
+
if col < grid_cols-1 or row < grid_rows-1:
|
1087 |
+
# extract tile from input image
|
1088 |
+
ofs_x = max(row * tile_size-tile_overlap * row, 0)
|
1089 |
+
ofs_y = max(col * tile_size-tile_overlap * col, 0)
|
1090 |
+
# input tile area on total image
|
1091 |
+
if row == grid_rows-1:
|
1092 |
+
ofs_x = w - tile_size
|
1093 |
+
if col == grid_cols-1:
|
1094 |
+
ofs_y = h - tile_size
|
1095 |
+
|
1096 |
+
input_start_x = ofs_x
|
1097 |
+
input_end_x = ofs_x + tile_size
|
1098 |
+
input_start_y = ofs_y
|
1099 |
+
input_end_y = ofs_y + tile_size
|
1100 |
+
|
1101 |
+
# input tile dimensions
|
1102 |
+
input_tile = latent_model_input[:, :, input_start_y:input_end_y, input_start_x:input_end_x]
|
1103 |
+
input_list.append(input_tile)
|
1104 |
+
cond_tile = controlnet_latent_model_input[:, :, input_start_y:input_end_y, input_start_x:input_end_x]
|
1105 |
+
cond_list.append(cond_tile)
|
1106 |
+
img_tile = image[:, :, input_start_y*8:input_end_y*8, input_start_x*8:input_end_x*8]
|
1107 |
+
img_list.append(img_tile)
|
1108 |
+
|
1109 |
+
if len(input_list) == batch_size or col == grid_cols-1:
|
1110 |
+
input_list_t = torch.cat(input_list, dim=0)
|
1111 |
+
cond_list_t = torch.cat(cond_list, dim=0)
|
1112 |
+
img_list_t = torch.cat(img_list, dim=0)
|
1113 |
+
#print(input_list_t.shape, cond_list_t.shape, img_list_t.shape, fg_mask_list_t.shape)
|
1114 |
+
|
1115 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
1116 |
+
cond_list_t,
|
1117 |
+
t,
|
1118 |
+
encoder_hidden_states=controlnet_prompt_embeds,
|
1119 |
+
controlnet_cond=img_list_t,
|
1120 |
+
conditioning_scale=conditioning_scale,
|
1121 |
+
guess_mode=guess_mode,
|
1122 |
+
return_dict=False,
|
1123 |
+
image_encoder_hidden_states = ram_encoder_hidden_states,
|
1124 |
+
)
|
1125 |
+
|
1126 |
+
if guess_mode and do_classifier_free_guidance:
|
1127 |
+
# Infered ControlNet only for the conditional batch.
|
1128 |
+
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
1129 |
+
# add 0 to the unconditional batch to keep it unchanged.
|
1130 |
+
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|
1131 |
+
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
|
1132 |
+
|
1133 |
+
# predict the noise residual
|
1134 |
+
model_out = self.unet(
|
1135 |
+
input_list_t,
|
1136 |
+
t,
|
1137 |
+
encoder_hidden_states=prompt_embeds,
|
1138 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1139 |
+
down_block_additional_residuals=down_block_res_samples,
|
1140 |
+
mid_block_additional_residual=mid_block_res_sample,
|
1141 |
+
return_dict=False,
|
1142 |
+
image_encoder_hidden_states = ram_encoder_hidden_states,
|
1143 |
+
)[0]
|
1144 |
+
|
1145 |
+
#for sample_i in range(model_out.size(0)):
|
1146 |
+
# noise_preds_row.append(model_out[sample_i].unsqueeze(0))
|
1147 |
+
input_list = []
|
1148 |
+
cond_list = []
|
1149 |
+
img_list = []
|
1150 |
+
|
1151 |
+
noise_preds.append(model_out)
|
1152 |
+
|
1153 |
+
# Stitch noise predictions for all tiles
|
1154 |
+
noise_pred = torch.zeros(latent_model_input.shape, device=latent_model_input.device)
|
1155 |
+
contributors = torch.zeros(latent_model_input.shape, device=latent_model_input.device)
|
1156 |
+
# Add each tile contribution to overall latents
|
1157 |
+
for row in range(grid_rows):
|
1158 |
+
for col in range(grid_cols):
|
1159 |
+
if col < grid_cols-1 or row < grid_rows-1:
|
1160 |
+
# extract tile from input image
|
1161 |
+
ofs_x = max(row * tile_size-tile_overlap * row, 0)
|
1162 |
+
ofs_y = max(col * tile_size-tile_overlap * col, 0)
|
1163 |
+
# input tile area on total image
|
1164 |
+
if row == grid_rows-1:
|
1165 |
+
ofs_x = w - tile_size
|
1166 |
+
if col == grid_cols-1:
|
1167 |
+
ofs_y = h - tile_size
|
1168 |
+
|
1169 |
+
input_start_x = ofs_x
|
1170 |
+
input_end_x = ofs_x + tile_size
|
1171 |
+
input_start_y = ofs_y
|
1172 |
+
input_end_y = ofs_y + tile_size
|
1173 |
+
|
1174 |
+
noise_pred[:, :, input_start_y:input_end_y, input_start_x:input_end_x] += noise_preds[row*grid_cols + col] * tile_weights
|
1175 |
+
contributors[:, :, input_start_y:input_end_y, input_start_x:input_end_x] += tile_weights
|
1176 |
+
# Average overlapping areas with more than 1 contributor
|
1177 |
+
noise_pred /= contributors
|
1178 |
+
|
1179 |
+
|
1180 |
+
# perform guidance
|
1181 |
+
if do_classifier_free_guidance:
|
1182 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1183 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1184 |
+
|
1185 |
+
|
1186 |
+
|
1187 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1188 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1189 |
+
|
1190 |
+
# call the callback, if provided
|
1191 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1192 |
+
progress_bar.update()
|
1193 |
+
if callback is not None and i % callback_steps == 0:
|
1194 |
+
callback(i, t, latents)
|
1195 |
+
|
1196 |
+
# If we do sequential model offloading, let's offload unet and controlnet
|
1197 |
+
# manually for max memory savings
|
1198 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
1199 |
+
self.unet.to("cpu")
|
1200 |
+
self.controlnet.to("cpu")
|
1201 |
+
torch.cuda.empty_cache()
|
1202 |
+
|
1203 |
+
has_nsfw_concept = None
|
1204 |
+
if not output_type == "latent":
|
1205 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]#.flip(1)
|
1206 |
+
#image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
1207 |
+
else:
|
1208 |
+
image = latents
|
1209 |
+
has_nsfw_concept = None
|
1210 |
+
|
1211 |
+
if has_nsfw_concept is None:
|
1212 |
+
do_denormalize = [True] * image.shape[0]
|
1213 |
+
else:
|
1214 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
1215 |
+
|
1216 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
1217 |
+
|
1218 |
+
# Offload last model to CPU
|
1219 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
1220 |
+
self.final_offload_hook.offload()
|
1221 |
+
|
1222 |
+
if not return_dict:
|
1223 |
+
return (image, has_nsfw_concept)
|
1224 |
+
|
1225 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|