Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -175,18 +175,18 @@ tag_model.to(device, dtype=weight_dtype)
|
|
175 |
@spaces.GPU()
|
176 |
def process(
|
177 |
input_image: Image.Image,
|
178 |
-
user_prompt
|
179 |
-
num_inference_steps: int,
|
180 |
-
scale_factor: int,
|
181 |
-
cfg_scale: float,
|
182 |
-
seed: int,
|
183 |
-
latent_tiled_size: int,
|
184 |
-
latent_tiled_overlap: int,
|
185 |
-
sample_times: int
|
186 |
-
) -> List[np.ndarray]:
|
187 |
positive_prompt = "clean, high-resolution, 8k, best quality, masterpiece",
|
188 |
negative_prompt = "dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
|
189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
resize_preproc = transforms.Compose([
|
191 |
transforms.Resize(process_size, interpolation=transforms.InterpolationMode.BILINEAR),
|
192 |
])
|
@@ -289,37 +289,13 @@ with block:
|
|
289 |
examples=[
|
290 |
[
|
291 |
"preset/datasets/test_datasets/179.png",
|
292 |
-
"",
|
293 |
-
50,
|
294 |
-
4,
|
295 |
-
7.5,
|
296 |
-
123,
|
297 |
-
320,
|
298 |
-
4,
|
299 |
-
1,
|
300 |
],
|
301 |
[
|
302 |
"preset/datasets/test_datasets/apologise.png",
|
303 |
-
"",
|
304 |
-
50,
|
305 |
-
4,
|
306 |
-
7.5,
|
307 |
-
123,
|
308 |
-
320,
|
309 |
-
4,
|
310 |
-
1,
|
311 |
],
|
312 |
],
|
313 |
inputs=[
|
314 |
input_image,
|
315 |
-
user_prompt,
|
316 |
-
num_inference_steps,
|
317 |
-
scale_factor,
|
318 |
-
cfg_scale,
|
319 |
-
seed,
|
320 |
-
latent_tiled_size,
|
321 |
-
latent_tiled_overlap,
|
322 |
-
sample_times,
|
323 |
],
|
324 |
outputs=[result_gallery],
|
325 |
fn=process,
|
@@ -327,14 +303,6 @@ with block:
|
|
327 |
)
|
328 |
inputs = [
|
329 |
input_image,
|
330 |
-
user_prompt,
|
331 |
-
num_inference_steps,
|
332 |
-
scale_factor,
|
333 |
-
cfg_scale,
|
334 |
-
seed,
|
335 |
-
latent_tiled_size,
|
336 |
-
latent_tiled_overlap,
|
337 |
-
sample_times,
|
338 |
]
|
339 |
run_button.click(fn=process, inputs=inputs, outputs=[result_gallery])
|
340 |
|
|
|
175 |
@spaces.GPU()
|
176 |
def process(
|
177 |
input_image: Image.Image,
|
178 |
+
user_prompt = "",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
positive_prompt = "clean, high-resolution, 8k, best quality, masterpiece",
|
180 |
negative_prompt = "dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
|
181 |
+
num_inference_steps = 50,
|
182 |
+
scale_factor = 4,
|
183 |
+
cfg_scale = 7.5,
|
184 |
+
seed = 123,
|
185 |
+
latent_tiled_size = 320,
|
186 |
+
latent_tiled_overlap = 4,
|
187 |
+
sample_times = 1,
|
188 |
+
) -> List[np.ndarray]:
|
189 |
+
process_size = 512
|
190 |
resize_preproc = transforms.Compose([
|
191 |
transforms.Resize(process_size, interpolation=transforms.InterpolationMode.BILINEAR),
|
192 |
])
|
|
|
289 |
examples=[
|
290 |
[
|
291 |
"preset/datasets/test_datasets/179.png",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
],
|
293 |
[
|
294 |
"preset/datasets/test_datasets/apologise.png",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
],
|
296 |
],
|
297 |
inputs=[
|
298 |
input_image,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
],
|
300 |
outputs=[result_gallery],
|
301 |
fn=process,
|
|
|
303 |
)
|
304 |
inputs = [
|
305 |
input_image,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
]
|
307 |
run_button.click(fn=process, inputs=inputs, outputs=[result_gallery])
|
308 |
|