Spaces:
Running
on
Zero
Running
on
Zero
Update pipelines/pipeline_seesr.py
Browse files- pipelines/pipeline_seesr.py +19 -19
pipelines/pipeline_seesr.py
CHANGED
@@ -1226,37 +1226,37 @@ class StableDiffusionControlNetPipeline(DiffusionPipeline, TextualInversionLoade
|
|
1226 |
|
1227 |
if use_KDS:
|
1228 |
|
1229 |
-
# 2) Compute x₀ prediction
|
1230 |
beta_t = 1 - self.scheduler.alphas_cumprod[t]
|
1231 |
alpha_t = self.scheduler.alphas_cumprod[t].sqrt()
|
1232 |
sigma_t = beta_t.sqrt()
|
1233 |
-
x0_pred = (latents - sigma_t * noise_pred) / alpha_t
|
1234 |
-
|
1235 |
-
# 3) Apply KDE steering
|
1236 |
-
m_shift = kde_grad(x0_pred, patch_size=patch_size, bandwidth=bandwidth)
|
1237 |
-
delta_t = gamma_0 * (1 - i / (len(timesteps) - 1))
|
1238 |
-
x0_steer = x0_pred + delta_t * m_shift
|
1239 |
-
# frac = i / (len(timesteps) - 1)
|
1240 |
-
# delta_t = 0.0 if frac < 0.3 else 0.3
|
1241 |
-
# x0_steer = x0_pred + delta_t * gamma_0 * m_shift
|
1242 |
|
|
|
|
|
1243 |
|
1244 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1245 |
noise_pred_kds = (latents - alpha_t * x0_steer) / sigma_t
|
1246 |
|
1247 |
-
#
|
1248 |
if i < len(timesteps) - 1:
|
1249 |
-
|
1250 |
-
|
1251 |
else:
|
1252 |
-
|
1253 |
-
|
1254 |
sigma_prev = (1 - alpha_prev**2).sqrt()
|
1255 |
|
1256 |
-
# 6) Form next latent per DDIM
|
1257 |
latents = (
|
1258 |
-
|
1259 |
-
|
1260 |
).detach().requires_grad_(True)
|
1261 |
else:
|
1262 |
|
|
|
1226 |
|
1227 |
if use_KDS:
|
1228 |
|
1229 |
+
# 2) Compute x₀ prediction for all particles
|
1230 |
beta_t = 1 - self.scheduler.alphas_cumprod[t]
|
1231 |
alpha_t = self.scheduler.alphas_cumprod[t].sqrt()
|
1232 |
sigma_t = beta_t.sqrt()
|
1233 |
+
x0_pred = (latents - sigma_t * noise_pred) / alpha_t # shape [2N, C, H, W]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1234 |
|
1235 |
+
# — split into unconditional vs. conditional
|
1236 |
+
x0_uncond, x0_cond = x0_pred.chunk(2, dim=0) # each [N, C, H, W]
|
1237 |
|
1238 |
+
# 3) Apply KDE steering *only* on the conditional batch
|
1239 |
+
m_shift_cond = kde_grad(x0_cond, bandwidth=bandwidth) # [N, C, H, W]
|
1240 |
+
delta_t = gamma_0 * (1 - i / (len(timesteps) - 1))
|
1241 |
+
x0_cond_steer = x0_cond + delta_t * m_shift_cond # steered conditional
|
1242 |
+
|
1243 |
+
# 4) Recombine the latents: leave uncond untouched, use steered cond
|
1244 |
+
x0_steer = torch.cat([x0_uncond, x0_cond_steer], dim=0) # [2N, C, H, W]
|
1245 |
+
|
1246 |
+
# 5) Recompute “noise” for DDIM step
|
1247 |
noise_pred_kds = (latents - alpha_t * x0_steer) / sigma_t
|
1248 |
|
1249 |
+
# 6) Determine prev alphas and form next latent per DDIM
|
1250 |
if i < len(timesteps) - 1:
|
1251 |
+
next_t = timesteps[i + 1]
|
1252 |
+
alpha_prev = self.scheduler.alphas_cumprod[next_t].sqrt()
|
1253 |
else:
|
1254 |
+
alpha_prev = self.scheduler.final_alpha_cumprod.sqrt()
|
|
|
1255 |
sigma_prev = (1 - alpha_prev**2).sqrt()
|
1256 |
|
|
|
1257 |
latents = (
|
1258 |
+
alpha_prev * x0_steer
|
1259 |
+
+ sigma_prev * noise_pred_kds
|
1260 |
).detach().requires_grad_(True)
|
1261 |
else:
|
1262 |
|