alexnasa commited on
Commit
58bb60e
·
verified ·
1 Parent(s): 291b4d1

Update pipelines/pipeline_seesr.py

Browse files
Files changed (1) hide show
  1. pipelines/pipeline_seesr.py +19 -19
pipelines/pipeline_seesr.py CHANGED
@@ -1226,37 +1226,37 @@ class StableDiffusionControlNetPipeline(DiffusionPipeline, TextualInversionLoade
1226
 
1227
  if use_KDS:
1228
 
1229
- # 2) Compute x₀ prediction
1230
  beta_t = 1 - self.scheduler.alphas_cumprod[t]
1231
  alpha_t = self.scheduler.alphas_cumprod[t].sqrt()
1232
  sigma_t = beta_t.sqrt()
1233
- x0_pred = (latents - sigma_t * noise_pred) / alpha_t
1234
-
1235
- # 3) Apply KDE steering
1236
- m_shift = kde_grad(x0_pred, patch_size=patch_size, bandwidth=bandwidth)
1237
- delta_t = gamma_0 * (1 - i / (len(timesteps) - 1))
1238
- x0_steer = x0_pred + delta_t * m_shift
1239
- # frac = i / (len(timesteps) - 1)
1240
- # delta_t = 0.0 if frac < 0.3 else 0.3
1241
- # x0_steer = x0_pred + delta_t * gamma_0 * m_shift
1242
 
 
 
1243
 
1244
- # 4) Recompute “noise” for DDIM step
 
 
 
 
 
 
 
 
1245
  noise_pred_kds = (latents - alpha_t * x0_steer) / sigma_t
1246
 
1247
- # 5) Determine prev alphas
1248
  if i < len(timesteps) - 1:
1249
- next_t = timesteps[i + 1]
1250
- alpha_prev = self.scheduler.alphas_cumprod[next_t].sqrt()
1251
  else:
1252
- alpha_prev = self.scheduler.final_alpha_cumprod.sqrt()
1253
-
1254
  sigma_prev = (1 - alpha_prev**2).sqrt()
1255
 
1256
- # 6) Form next latent per DDIM
1257
  latents = (
1258
- alpha_prev * x0_steer
1259
- + sigma_prev * noise_pred_kds
1260
  ).detach().requires_grad_(True)
1261
  else:
1262
 
 
1226
 
1227
  if use_KDS:
1228
 
1229
+ # 2) Compute x₀ prediction for all particles
1230
  beta_t = 1 - self.scheduler.alphas_cumprod[t]
1231
  alpha_t = self.scheduler.alphas_cumprod[t].sqrt()
1232
  sigma_t = beta_t.sqrt()
1233
+ x0_pred = (latents - sigma_t * noise_pred) / alpha_t # shape [2N, C, H, W]
 
 
 
 
 
 
 
 
1234
 
1235
+ # — split into unconditional vs. conditional
1236
+ x0_uncond, x0_cond = x0_pred.chunk(2, dim=0) # each [N, C, H, W]
1237
 
1238
+ # 3) Apply KDE steering *only* on the conditional batch
1239
+ m_shift_cond = kde_grad(x0_cond, bandwidth=bandwidth) # [N, C, H, W]
1240
+ delta_t = gamma_0 * (1 - i / (len(timesteps) - 1))
1241
+ x0_cond_steer = x0_cond + delta_t * m_shift_cond # steered conditional
1242
+
1243
+ # 4) Recombine the latents: leave uncond untouched, use steered cond
1244
+ x0_steer = torch.cat([x0_uncond, x0_cond_steer], dim=0) # [2N, C, H, W]
1245
+
1246
+ # 5) Recompute “noise” for DDIM step
1247
  noise_pred_kds = (latents - alpha_t * x0_steer) / sigma_t
1248
 
1249
+ # 6) Determine prev alphas and form next latent per DDIM
1250
  if i < len(timesteps) - 1:
1251
+ next_t = timesteps[i + 1]
1252
+ alpha_prev = self.scheduler.alphas_cumprod[next_t].sqrt()
1253
  else:
1254
+ alpha_prev = self.scheduler.final_alpha_cumprod.sqrt()
 
1255
  sigma_prev = (1 - alpha_prev**2).sqrt()
1256
 
 
1257
  latents = (
1258
+ alpha_prev * x0_steer
1259
+ + sigma_prev * noise_pred_kds
1260
  ).detach().requires_grad_(True)
1261
  else:
1262